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’ Fix wog = 0and 0 < y < 0.1. Consider dataset
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GD with a constant stepsize X =009, x=0¢-09), y=y,=1 | |
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L(w,), L(w,) > exp(—c?)
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- A minimax lower bound
[Wu et al, 2024] acceleration via unstable convergence

Similar results hold for

For T = Q = O(T), we have L(w;) < O(1/T?
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