
[Assumption (bounded + separable)] 

•  

•  unit vector , 

∥xi∥ ≤ 1, yi ∈ {±1}, i = 1,…, n

∃ w* min
i

yix⊤
i w* ≥ γ > 0
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wt+1 = wt − η((−ℓ−1)′ ∘ L(wt))∇L(wt)

≈ wt −
η

L(wt)
∇L(wt)

Large adaptive stepsizes

[Theorem]  

For , we have 

,   where 

t > 1/γ2

L(w̄t) ≤ exp( − Θ(γ2ηt)) w̄t =
1
t

t

∑
k=1

wk

wt+1 = wt − η∇L(wt)

     L(w) =
1
n

n

∑
i=1

ℓ(yix⊤
i w) ℓ(t) = ln(1 + exp(−t))

after  burn-in steps, adaptive GD is arbitrarily fast as 1/γ2 η → ∞

[Theorem]  

,   with margin  such that: for any first-order batch 
method, we have 

   =>    

                                    =>    when  is large

∀w0 ∃ (xi, yi)n
i=1 γ

min
i

yix⊤
i wt > 0 t ≥ Ω( min{1/γ2, ln n})

t ≥ Ω(1/γ2) n

[Definition]  

First-order batch method: 

 

where  for any 

wt ∈ w0 + 𝗌𝗉𝖺𝗇{∇L(w0), …, ∇L(wt−1)}

L(w) = �̂�ℓ(yx⊤w) ℓ

[Ji & Telgarsky, 2018]  

For , we have and  

[Wu et al, 2024] 

For  and , we have 

η = Θ(1) L(wt) ↓ L(wt) ≤ Õ(1/t)

T = Ω(n) η = Θ(T ) L(wT) ≤ Õ(1/T2)

GD with a constant stepsize

With a small number of GD steps,  

1. minimize  up to  error 

2. find a linear separator, 

L(w) ϵ

min
i

yix⊤
i w > 0
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For , we have and η = Θ(1) L(wt) ↓ L(wt) ≤ exp(−Θ(t))

GD with (small) adaptive stepsizes

Tasks

solving Task #1 with  
 solves Task #2ϵ = ln(2)/n

A minimax lower bound

wt+1 = wt − η∇ϕ(wt) ϕ(w) = − ℓ−1(L(w))

≈ ln∑ exp(−yix⊤
i w)
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[Theorem]  

Fix  and . Consider dataset  

 

If the hyperparameter  for adaptive GD is such that , then 

there is  that only depends on , such that 

w0 = 0 0 < γ < 0.1

x1 = (γ, 0.9), x2 = (γ, − 0.9), y1 = y2 = 1

η L(wt) ↓
c γ

L(w̄t), L(wt) ≥ exp(−ct)

(batch) methods #steps

const-stepsize GD [J & T 2018]

small-stepsize adaptive GD [J & T, 2021]

dual momentum [Ji et al, 2021]

large-stepsize adaptive GD

minimax lower bound

Õ(n /γ2)

O(ln(n)/γ2)

1/γ2

Ω(min{1/γ2, ln n})

O( ln(n)ln ln(n) /γ)

A step complexity comparison

# steps needed by batch methods to find a linear separator 
(by achieving )L(w) < ln(2)/n

Extensions

Similar results hold for  

• Two-layer networks w/ leaky ReLU, fixed outer layer, separable data 

• Liner predictors w/ other loss functions 

Key: transformed objective  needs to be convex and Lipschitzϕ( ⋅ )

For , 

• GD with large, adaptive stepsizes is minimax optimal 

• other methods are strictly suboptimal 

• Perceptron, an online method, also takes  steps 

For , what’s the correct trade-off between  and ?

n = exp(Ω(1/γ2))

1/γ2

n = exp(O(1/γ2)) γ n

not always true if  is monotone => small L(wt) η

averaging is needed, b/c  oscillates for large L(wt) η

observe that ∥∇2L∥ ≤ L

acceleration via unstable convergence


