Minimax Optimal Convergence of Gradient Descent in Logistic Regression via Large and Adaptive Stepsizes

Background

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i x_i^{\mathsf{T}} w) \quad \ell(t) = \ln(1 + \exp(-t))$$

[Assumption (bounded + separable)]

- $||x_i|| \le 1, y_i \in \{\pm 1\}, i = 1, ..., n$
- \exists unit vector w^* , $\min y_i x_i^\top w^* \ge \gamma > 0$

Tasks

With a small number of GD steps,

- 1. minimize L(w) up to ϵ error
- 2. find a linear separator, $\min y_i x_i^\top w > 0$

GD with a constant stepsize

$$w_{t+1} = w_t - \eta \,\nabla L(w_t)$$

[Ji & Telgarsky, 2018]

For $\eta = \Theta(1)$, we have $L(w_t) \downarrow$ and $L(w_t) \leq \tilde{O}(1/t)$

[Wu et al, 2024] acceleration via unstable convergence

For $T = \Omega(n)$ and $\eta = \Theta(T)$, we have $L(w_T) \leq \tilde{O}(1/T^2)$

GD with (small) adaptive stepsizes

observe that $\|\nabla^2 L\| \leq L$

solving Task #1 with

 $\epsilon = \ln(2)/n$ solves Task #2

$$w_{t+1} = w_t - \eta \left((-\ell^{-1})' \circ L(w_t) \right) \nabla L(w_t)$$

$$\approx w_t - \frac{\eta}{L(w_t)} \nabla L(w_t)$$

$$w_{t+1} = w_t - \eta \nabla \phi(w_t) \qquad \phi(w) = -\ell^{-1}(L(w))$$

$$\approx \ln \sum \exp(-y_i x_i^{\mathsf{T}} w)$$

[Ji & Telgarsky, 2021]

For $\eta = \Theta(1)$, we have $L(w_t) \downarrow$ and $L(w_t) \leq \exp(-\Theta(t))$

Main results Large adaptive stepsizes [Theorem] For $t > 1/\gamma^2$, we have

where

[Theorem]

$$L(\bar{w}_t) \le \exp\left(-\Theta(\gamma^2 \eta t)\right), \text{ where } \bar{w}_t = \frac{1}{t} \sum_{k=1}^t w_k$$

after $1/\gamma^2$ burn-in steps, adaptive GD is arbitrarily fast as $\eta \to \infty$

- averaging is needed, b/c $L(w_t)$ oscillates for large η
- not always true if $L(w_t)$ is monotone => small η

[Theorem]

Fix $w_0 = 0$ and $0 < \gamma < 0.1$. Consider dataset

$$x_1 = (\gamma, 0.9), \quad x_2 = (\gamma, -0.9), \quad y_1 = y_2 = 1$$

If the hyperparameter η for adaptive GD is such that $L(w_t) \downarrow$, then there is c that only depends on γ , such that

$$L(\bar{w}_t), L(w_t) \ge \exp(-ct)$$

A minimax lower bound

[Definition]

First-order batch method:

$$w_t \in w_0 + \operatorname{span}\{ \nabla L(w_0), \dots, \nabla L(w_{t-1}) \}$$

$$e L(w) = \hat{\mathbb{E}} \ell(y x^{\mathsf{T}} w) \text{ for any } \ell$$

 $\forall w_0, \exists (x_i, y_i)_{i=1}^n$ with margin γ such that: for any first-order batch method, we have

$$\min_{i} y_i x_i^{\mathsf{T}} w_t > 0 \implies t \ge \Omega \left(\min\{1/\gamma^2, \ln n\} \right)$$

=> $t \ge \Omega(1/\gamma^2)$ when *n* is large

Ruiqi Zhang¹ Jingfeng Wu¹ Licong Lin¹ Peter Bartlett¹² ¹UC Berkeley ²Google DeepMind

Other results

A step complexity comparison

steps needed by batch methods to find a linear separator (by achieving $L(w) < \ln(2)/n$)

(batch) methods	#steps
const-stepsize GD [J & T 2018]	$\tilde{O}(n/\gamma^2)$
small-stepsize adaptive GD [J & T, 2021]	$O(\ln(n)/\gamma^2)$
dual momentum [Ji et al, 2021]	$O(\sqrt{\ln(n)\ln\ln(n)}/\gamma)$
large-stepsize adaptive GD	$1/\gamma^2$
minimax lower bound	$\Omega(\min\{1/\gamma^2,\ln n\})$

- For $n = \exp(\Omega(1/\gamma^2))$,

Extensions

Similar results hold for

References

- COLT 2018
- **ICML 2021**
- analysis." ALT 2021
- efficiency." COLT 2024

• GD with large, adaptive stepsizes is minimax optimal

• other methods are strictly suboptimal

```
• Perceptron, an online method, also takes 1/\gamma^2 steps
```

For $n = \exp(O(1/\gamma^2))$, what's the correct trade-off between γ and n?

• Two-layer networks w/ leaky ReLU, fixed outer layer, separable data

• Liner predictors w/ other loss functions

Key: transformed objective $\phi(\cdot)$ needs to be convex and Lipschitz

Ji & Telgarsky. "Risk and parameter convergence of logistic regression."

Ji, Srebro, Telgarsky. "Fast margin maximization via dual acceleration."

Ji & Telgarsky. "Characterizing the implicit bias via a primal-dual

Wu, Bartlett, Telgarsky, and Yu. "Large stepsize gradient descent for logistic loss: non-monotonicity of the loss improves optimization