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past work: large stepsize accelerates GD for logistic regression
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• generalization                       <=     complexity control

Machine learning

test error ≤ training error +
complexity

n

this talk: generalization, done together with optimization



Complexity control

Bartlett. "For valid generalization the size of the weights is more important than the size 
of the network." NeurIPS 1996

classical answer: explicit 
control  

• model family 

• norm regularization 

• …

deep learning: implicit control 
via opt algo  

• early stopping 

• stochastic averaging 

• …

how good is implicit regularization?



For all Gaussian linear regression problems:  

early stopping is  

• always no worse  

• sometimes much better 

than -regularization.ℓ2

One of our results



Our approach

Peter Bartlett Jason Lee Sham Kakade Bin Yu

Wu, Bartlett*, Lee*, Kakade*, Yu*. "Risk comparisons in linear regression: implicit 
regularization dominates explicit regularization." arXiv 2025

Instance-wise risk comparison 

• GD vs ridge regression 

• GD vs (online) SGD

instead of minimax

high dimension



Linear regression 

excess risk / prediction error 

R(w) = 𝔼(y − x⊤w)2 − 𝔼(y − x⊤w*)2

= ∥w − w*∥2
Σ

,     for  x ∼ 𝖭(0, Σ) y = x⊤w* + 𝖭(0, 1) ∥w*∥Σ ≲ 1

 iid samples n (x1, y1), …, (xn, yn)    X =
x⊤

1
⋮
x⊤

n

Y =
y1
⋮
yn

problem determined by (Σ, w*)

finite signal-to-noise ratio



Explicit / implicit regularization

w𝗋𝗂𝖽𝗀𝖾
λ = arg min

1
n

n

∑
i=1

∥x⊤
i w − yi∥2 + λ∥w∥2

= (X⊤X + nλI)−1X⊤Y

ridge regression

•  

• for , 

  

•

w0 = 0
s = 1,…, t

ws = ws−1 −
η
n

X⊤(Xws−1 − Y )

w𝗀𝖽
t = wt

gradient descent

hyperparameter: λ ≥ 0

hyperparameter: t ≥ 0



Notation
• SVD 

           

• head and tail divided by k 

           

• matrix , vector  

 = pseudoinverse of           

Σ = ∑
i≥1

λiuiu⊤
i λ1 ≥ λ2 ≥ …

Σ0:k = ∑
i≤k

λiuiu⊤
i Σk:∞ = ∑

i>k

λiuiu⊤
i

M v

M−1 M ∥v∥2
M = v⊤Mv



Bounds for ridge
Theorem. For all , in expectation 

 

critical index                          

effective regularization          

effective dimension               

λ ≥ 0

𝔼R(w𝗋𝗂𝖽𝗀𝖾
λ ) ≳ λ̃2∥w*∥2

Σ−1
0:k*

+ ∥w*∥2
Σk*:∞

+ min {D
n

, 1}

k* = min {k : λ +
∑i>k λi

n
≥ cλk+1}

λ̃ = λ +
∑i>k* λi

n

D = k* +
1
λ̃2 ∑

i>k*

λ2
i

Tsigler & Bartlett. “Benign overfitting in ridge regression.” JMLR 2023

same upper bound holds w.h.p.“ ” can be 
made “w.h.p.”

𝔼

*possible to pin down 
 constants via RMT



A ridge-type bound for GD
Theorem [WBLKY’25]. For all  and , w.h.p. 

 

critical index                          

effective regularization          

effective dimension               

0 < η ≲ 1/𝗍𝗋(Σ) t ≥ 0

R(w𝗀𝖽
t ) ≲ λ̃2∥w*∥2

Σ−1
0:k*

+ ∥w*∥2
Σk*:∞

+
D
n

k* = min {k :
1
ηt

+
∑i>k λi

n
≥ cλk+1}

λ̃ =
1
ηt

+
∑i>k* λi

n

D = k* +
1
λ̃2 ∑

i>k*

λ2
i

was λ

was min {D
n

, 1}

GD is no worse than ridge. 
Proof. If , set ; otherwise, set .D > n t = 0 t = 1/(ηλ)



Theorem [WBLKY’25]. For every Gaussian linear regression, 
, and , there is  such that: w.h.p. n ≥ 1 λ ≥ 0 t

R(w𝗀𝖽
t ) ≲ 𝔼R(w𝗋𝗂𝖽𝗀𝖾

λ )

GD dominates ridge

Ali, Kolter, Tibshirani. “A continuous-time view of early stopping for least squares 
regression.” AISTATS 2019

Prior work. Assume an isotropic prior,  

                     

𝔼w*⊗2 ∝ I

𝔼R(w𝗀𝖽
t ) ≤ 1.69𝔼R(w𝗋𝗂𝖽𝗀𝖾

λ )

,     for  x ∼ 𝖭(0, Σ) y = x⊤w* + 𝖭(0, 1) ∥w*∥Σ ≲ 1

next: GD can be much better than ridge

inf
λ

𝔼R(w𝗋𝗂𝖽𝗀𝖾
λ ) ≤



Power law class

1<b<a a<b<1+2a b>1+2a

ridge

SGD

GD

minimax

O(n− b − 1
b )

Ω(n− b − 1
b )

O(n− b − 1
b )

Õ(n− b − 1
b )

Ω(n− 2a
1 + 2a )

Ω̃(n− b − 1
a )

               for  λi ≂ i−a λi(u⊤
i w*)2 ≂ i−b a, b > 1

GD is always optimal  
ridge/SGD is only partially optimal



Power law class
               for  λi ≂ i−a λi(u⊤

i w*)2 ≂ i−b a, b > 1

GD is always optimal

ridge is  
polynomially 
suboptimal

SGD is 
polynomially  
suboptimal

(best of ridge and SGD is also optimal)



Results so far
GD dominates ridge 

• always no worse 

• sometimes much better

remark (computation) 

multi-pass SGD (sample with replacement) 

• multi-pass SGD is no better than GD 

• with correct stepsizes, multi-pass SGD  GD≈



Why not known earlier?

more surprise: GD vs (online) SGD

fixed design is easy [DFKU’13, 6 pages]  

but random design is hard  

• instance-wise, not worst-case 

• high-dim is surprising [BLLT’20, 44 pages] 

• right tools 2019+

Dhillon, Foster, Kakade, Unga. “A risk comparison of ordinary least squares vs ridge 
regression.” JMLR 2013 

Bartlett, Long, Lugosi, Tsigler. “Benign overfitting in linear regression.” PNAS 2020



Batch / online

•  

• for , 

 

•

w0 = 0

s = 1,…, t

ws = ws−1 −
η
n

X⊤(Xws−1 − Y )

w𝗀𝖽
t = wt

gradient descent

hyperparameter: t ≥ 0

• , ,  

• for , 

 

 

•

w0 = 0 η0 = η N = n/log n

i = 1,…, n

ηi = {0.1ηi−1 if i % N = 0
ηi−1 else

wi = wi−1 − ηi(x⊤
i wi−1 − yi)xi

w𝗌𝗀𝖽
η = wn

stochastic gradient descent

hyperparameter: 0 < η ≲ 1/𝗍𝗋(Σ)

compare implicit regularization: batch vs online



Bounds for SGD
Theorem. For all , in expectation 

 

effective steps                         

critical index                          

effective dimension               

0 < η ≲ 1/𝗍𝗋(Σ)

𝔼R(w𝗌𝗀𝖽
η ) ≂

n

∏
i=1

(I − ηiΣ)w*
2

Σ

+
D
N

N = n /log n

k* := min { 1
ηN

≥ cλk+1}
D = k* + η2N2 ∑

i>k*

λ2
i

Zou*, Wu*, Braverman, Gu, Kakade. “Benign overfitting of constant-stepsize SGD for linear 
regression.” COLT 2021 

Wu*, Zou*, Braverman, Gu, Kakade. “Last iterate risk bounds of SGD with decaying 
stepsize for overparameterized linear regression.” ICML 2022

matching upper / lower bounds

effective  
regularization

“ " can be made “ ”N n



SGD vs ridge excess risk = bias + D/N

SGD ridge

bias

effective steps

critical index

effective 
regularization

effective 
dimension

N = n /log n

λ̃2∥w*∥2
Σ−1

0:k*
+ ∥w*∥2

Σk*:∞

λ̃ =
1

ηN λ̃ = λ +
∑i>k* λi

n

D = k* +
1
λ̃2 ∑

i>k*

λ2
i

N = n

λk* ≳ λ +
∑i>k* λi

n
≳ λk*+1

λk* ≳
1

ηN
≳ λk*+1

∥e−Θ(ηN)Σ0:k*w*∥2
Σ0:k*

+ ∥w*∥2
Σk*:∞

bias decays faster

constraint 
heavy tail

constraint  
η ≲ 1/𝗍𝗋(Σ)

GD dominates ridge; would GD dominate SGD?



GD does not dominate SGD
Theorem [WBLKY’25]. . For a sequence of -dim problems 

             

we have , moreover 

• for all  and ,      

• for ,                                    

n ≥ 1 d

d ≥ n2 w* =
n0.45

0
⋮
0

Σ =
n−0.9

1/d
⋱

1/d

∥w*∥2
Σ ≤ 1

0 < η ≲ 1 t ≥ 0 𝔼R(w𝗀𝖽
t ) = Ω(n−0.2)

η ≂ 1 𝔼R(w𝗌𝗀𝖽
η ) = O(log(n)/n)

in high-dim  
online learning can be poly better than batch!



A lower bound for GD
Theorem [WBLKY’25]. For all  and  

 

effective dimension                  as before… 

benign overfitting index        

0 < η ≲ 1/𝗍𝗋(Σ) t ≥ 0

𝔼R(w𝗀𝖽
t ) ≳ ( ∑i>ℓ* λi

n )
2

∥w*∥2
Σ−1

0:ℓ*
+ ∥w*∥2

Σℓ*:∞
+ min {D

n
, 1}

D = k* +
1
λ̃2 ∑

i>k*

λ2
i

ℓ* = min {k :
∑i>k λi

n
≥ cλk+1}

GD variance = ridge variance 
GD bias ≥ OLS bias

when would GD dominate SGD?

in high-dim 
OLS bias can be large



A SGD-type bound for GD
Theorem [WBLKY’25]. For all  and , 
w.h.p. 

 

critical index                          

effective dimension                

order-1 effective dim             

0 < η ≲ 1/𝗍𝗋(Σ) 0 ≤ t ≲ n

R(w𝗀𝖽
t ) ≲ (I − ηΣ)t/2w*

2

Σ
+

D
n

+ ( D1

n )
2

k* := min { 1
ηt

≥ cλk+1}
D = k* + η2t2 ∑

i>k*

λ2
i

D1 = k* + ηt ∑
i>k*

λi

same as SGD 
when t = Θ(N)

• , always 

• in the hard example, 
D ≤ D1

D ≪ D1

when would ?D1 ≲ D



Spectrum condition

satisfied by  

•  for  

•  for  

violated by 

•  for  

•  in the hard example

λi ≂ a−i a > 1

λi ≂ i−a a > 1

λi ≂ i−1 log−a(i) a > 1

(λi)i≥1

Assumption. Spectrum decays fast and continuously 

for all ,     τ > 1 τ ∑
λi<1/τ

λi ≲ #{λi ≥ 1/τ}

 for (n−0.9, 1/d, …, 1/d) d ≥ n2

• rules out benign overfitting 
•  implies D1 ≲ k* ≤ D



Theorem [WBLKY’25]. For every Gaussian linear regression 
satisfying the above, , and , there is  such that 

 

Proof. Assumption implies .

n ≥ 1 0 ≤ η ≲ 1 t

𝔼R(w𝗀𝖽
t ) ≲ 𝔼R(w𝗌𝗀𝖽

η )
D1 ≲ k* ≤ D

GD dominates SGD in a subclass
Assumption. Spectrum decays fast and continuously 

for all ,     τ > 1 τ ∑
λi<1/τ

λi ≲ #{λi ≥ 1/τ}

,     for  x ∼ 𝖭(0, Σ) y = x⊤w* + 𝖭(0, 1) ∥w*∥Σ ≲ 1

no constraint on w*



Contributions

SGD is  
(nearly) optimal

fast continuously decaying spectrum

GD dominates SGD

Gaussian linear regression

GD dominates ridge  
but is incomparable with SGD

power law class

“dominance”: always no worse, sometimes much better

benign overfitting

ridge is optimal



How to reuse data?
• GD and SGD are incomparable  

• multi-pass SGD is no better than GD 

• but multi-epoch SGD (sample without replacement) 
dominates both 

• first epoch recovers SGD 

• continuous limit  recovers GFη → 0

data reuse strategy makes poly differences 
call for a new theory!


