Implicit Regularization
A Statistical View

Jingfeng Wu T_. DIMONS

2 ® | forthe Theory of Computing

Z
N
—
—
-
—
e

IIIIIIIIIIIIIIIIIIIIII



Machine learning

. complexity
test error < tralning error +
n
. optimization <= gradient methods

. generalization <= complexity control



Machine learning

. complexity
test error < training error +
n
. optimization <= gradient methods

past work: large stepsize accelerates GD for logistic regression
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Machine learning

. complexity
test error < training error +
n
. generalization <= complexity control

this talk: generalization, done together with optimization



Complexity control

classical answer: explicit deep learning: implicit control
control via opt algo

- model family . early stopping

- norm regularization - stochastic averaging

how good is implicit reqularization?

Bartlett. "For valid generalization the size of the weights is more important than the size
of the network." NeurIPS 1996



One of our results

For all Gaussian linear regression problems:
early stopping is
- always no worse

« sometimes much better

than &,-regularization.



Our approach

Instance-wise risk comparison instead of minimax

- GD vs ridge regression high dimension

« GD vs (online) SGD
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Peter Bartlett Jason Lee Sham Kakade Bin Yu

Wu, Bartlett*, Lee*, Kakade*, Yu*. "Risk comparisons in linear regression: implicit
regularization dominates explicit regularization." arXiv 2025



Linear regression

finite signal-to-noise ratio

x ~N(@,%), y=x"w*¥+N(0,1) for ||w*|y S 1

problem determined by (2, w¥*)

excess risk / prediction error
Rw) = E(y —x'w)” —

2
= [lw=w*|l5

niid samples (x{, y{), ..., (x,, y,)

E(y — xTwy?

xlT V1
X=1: Yy=1_:
x! In



Explicit / implicit regularization
ridge regression hyperparameter: 4 > 0

d - T 2 2
w, e = arg min — E |l w — ;|| + A[|w|
i=1

=X'X+nlD) XY

gradient descent hyperparameter: t > 0
° WO — O

- fors=1,....1,

w. = WS—I — EXT(XWS_I — Y)

S
n



Notation

« SVD

. matrix M, vector v

M~ = pseudoinverse of M HVH%W =v' My



Bounds for ridge

Theorem. For all 4 > 0, in expectation

*possible to pin down
constants via RMT

0:k" n

. . D
d [ ]
(v -R(w/{' ge) > /12HW*H%_1 + Hw*H%k*m + min { —, 1

" can be

same upper bound holds w.h.p.

made “w.h.p.”
Y 2
critical index k* = min {k A2 > C/1k+1}
n
effective regularization I=)4+=25
n

effective dimension D = k* + = Z A7

I>k*

Tsigler & Bartlett. “Benign overfitting in ridge regression.” JMLR 2023



A ridge-type bound for GD

Theorem [WBLKY25]. Forall0 < n S 1/tr(X) and t > 0, w.h.p.
D

d W 2 2
R(wE') S ZAwHIE, + w3, +—
, D
was min { —, |
S, ”
1 L
critical index k* = min {k 2 cAy, +1}
nt n
~ 1 Z */11\
effective regularization J=— 4=
nt n was A
‘\_/
1
effective dimension D =k*+— Z A7

GD is no worse than ridge.
Proof. If D > n, sett = 0; otherwise, sett = 1/(nA).



GD dominates ridge
x ~N(@©,%), y=x"w*+N(@,1) for ||[w*|y S 1

Theorem [WBLKY’'25]. For every Gaussian linear regression,
n>1,and A > 0, there is f such that: w.h.p.

R(wE) S ER(w; %)

° . . . *
Prior work. Assume an isotropic prior, Ew ®2 x [

inf ER(w]%8°) < ER(wEY) < 1.69ER(w!'%¢°)

next: GD can be much better than ridge

Ali, Kolter, Tibshirani. “A continuous-time view of early stopping for least squares
regression.” AISTATS 2019



Power law class

A=~i%  Au'w¥)r =i fora,b> 1

1<b<a a<b<1+2a b>1+2a
ridge O(n=5") Q(n~T%)
SGD Q(n="7) O(n="7)
GD O(n=5")
minimax Q(n="7)

GD is always optimal
ridge/SGD is only partially optimal




Power law class

A=~i%  Au'w¥)r =i fora,b> 1

A

I exponent of 1/n

ridlge
- SGD
—— GD / minimax

SGD is
polynomially | .
: 1
suboptimal
G
(best of ric

é 1+:2a "b

D is always optimal

ge and SGD is also optimal)

€= idgeis

polynomially
suboptimal



Results so far

GD dominates ridge
 always no worse

¢« sometimes much better

remark (computation)
multi-pass SGD (sample with replacement)

- multi-pass SGD is no better than GD

« with correct stepsizes, multi-pass SGD ~ GD



Why not known earlier?

fixed design is easy [DFKU"13, 6 pages]

but random design is hard
- instance-wise, not worst-case
« high-dim is surprising [BLLT'20, 44 pages]
. right tools 2019+

more surprise: GD vs (online) SGD

Dhillon, Foster, Kakade, Unga. “A risk comparison of ordinary least squares vs ridge
regression.” JMLR 2013

Bartlett, Long, Lugosi, Tsigler. “Benign overfitting in linear regression.” PNAS 2020



Batch / online

gradient descent
¢ Wy = 0

. fors=1,....1

n

w

S=W

hyperparameter: ¢t > 0

1 ——X'"Xw,_ - Y)

stochastic gradient descent

« Wy =0,1=n, N=nl/logn

. fori=1,...,n,

Hi =

Ni_q else
wW.=w.  — .(xTw. — V)X
i = Wi — 0\ Wi — V)X,

. ngd

. — Wn

hyperparameter: 0 < n S 1/tr(X)

compare implicit regularization: batch vs online



Bounds for SGD

Theorem. For all 0 < n < 1/tr(X), in expectation

n 2 D
-R(W;gd) ~ H(I— n2)w*| + N

=1 >
matching upper / lower bounds

effective steps N = n/logn “N" can be made “n”
1
critical index k™ := min {— > c/y, +1}
effective
] ] ] D = k* 2N? 2 . .
effective dimension k* +n“N Zk A regularization
i>k*

Zou’, Wu’, Braverman, Gu, Kakade. “Benign overfitting of constant-stepsize SGD for linear
regression.” COLT 2021

Wu', Zou®, Braverman, Gu, Kakade. “Last iterate risk bounds of SGD with decaying
stepsize for overparameterized linear regression.” ICML 2022



SGD vs ridge

excess risk = bias + D/N

SGD ridge
_ . P 2 2
bins le= @M Rocw |3+ llwHIg, | A wlls, + w=llz,.
bias decays faster
effective steps N =nl/logn N=n
tical i Apse 2 > ) Zi>k* A
critical index SRR D 2 A+ . 2 Ay
effective 7 L T Zi>k* 4
regularization | nN AT n .
constraint constraint
effective n S 1/tr(2) D= %4 1 Z Jp: heavy tail
dimension yE l

>k*

GD dominates ridge; would GD dominate SGD?




GD does not dominate SGD

Theorem [WBLKY'25].n > 1. For a sequence of d-dim problems

n0.45 n—0,9
d Z n2 w¥ = O Y — 1/d .
0 1/d

we have HW*H% < 1, moreover

forall0<nSland?>0, ER(wE) =Q(n 2

. fornp =1, -R(W;gd) = O(log(n)/n)

in high-dim
online learning can be poly better than batch!



A lower bound for GD

Theorem [WBLKY25]. Forall0 < n S 1/tr(X) and t > 0

d Zi>f*/1i 2 ) o : D
[ER(wtg ) > ( ) HW*HZ&;* + HW*HZK*;OO + min {—, 1}

n n

1
effective dimension D = k* + E 2 /11.2 as before...
I>k*

)
benign overfitting index £* = min {k el SN cAy, +1}
n

GD variance = ridge variance  in high-dim
GD bias > OLS bias OLS bias can be large

when would GD dominate SGD?



A SGD-type bound for GD

Theorem [WBLKY25]. Forall0 < n S 1/tr(X) and 0 <1 < n,

w.h.p.
2 D /Dy’
R(wE) < || = nzyPws (=)
2 n n
critical index k* := min i > cA
gt = (IS same as SGD
effective dimension D = k* + n°t? 2 A7 «— Whent = O(N)
I>k*
order-1 effective dim D, = k*+nt Z A;
I>k*
+ D < Dy, always when would D; < D?

- in the hard example, D < D,



Spectrum condition

Assumption. Spectrum decays fast and continuously

forallt>1, 7 Z A S #{A > 1/7)
A<1/t

satisfied by
. rules out benign overfitting

.+ L =~a'fora> 1 . impliesD; S k* < D
e ;=1 “fora>1

violated by
. A =i log™a(i) fora > 1

+ (4;);>1 in the hard example
(n=°%,1/d, ...,1/d) ford > n*



GD dominates SGD in a subclass

Assumption. Spectrum decays fast and continuously

forallt>1, 7 Z A S #{A > 1/7)
A<1/t

x ~N(@©,%), y=x"w*+N(@,1) for ||[w*|y S 1

Theorem [WBLKY’25]. For every Gaussian linear regression
satisfying the above, n > 1, and 0 < # < 1, there is f such that

R () < ER (%)

Proof. Assumption implies D; S k* < D.

no constraint on w¥*



Contributions

—> Gaussian linear regression benign overfitting

GD dominates ridge
but is incomparable with SGD

GD dominates SGD

SGD is \

(nearly) optimal ridge is optimal

— fast continuously decaying spectrum power law class <—

“dominance”: always no worse, sometimes much better



How to reuse data?

« GD and SGD are incomparable
« multi-pass SGD is no better than GD

« but multi-epoch SGD (sample without replacement)
dominates both

. first epoch recovers SGD

. continuous limit 7 — O recovers GF

data reuse strategy makes poly differences
call for a new theory!



