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Large Stepsize, Oscillation, Acceleration
Reimagining Gradient Descent



Gradient descent

w+ = w − η∇L(w)

Cauchy, 1847

dw = − ∇L(w)dt

“GD  discrete time gradient flow”≈

⇒ dL(w) = ∇L(w)⊤dw
= −∥∇L(w)∥2dt

   ⇒ L(w) ↓

because of stepsize, GD  discrete time flow≠



L(w) = w2

w+ = (1 − 2η)w

η < 1

η > 1
Descent lemma: 

for small ,  decreases monotonically  

for large ,  diverges in “bad” cases

η L(wt)

η L(wt)

Small stepsize for stability
L(w+) = L(w − η∇L(w))

= L(w) − η∥∇L(w)∥2 +
η2

2
∇L(w)⊤ ∇2L(v)∇L(w)

≤ L(w) − η∥∇L(w)∥2(1 −
η
2

∥∇2L(v)∥2) w v

w+

η <
2

sup ∥∇2L( ⋅ )∥



Classical theory
Let  be 1-smooth with a finite minimizer . For GD with , 

descent lemma             

convexity                       

-strong convexity     

L w* η = 1

L(wt) ↓

L(wt) − min L ≤
∥w0 − w*∥2

2t

α L(wt) − min L ≤ e−αt(L(w0) − min L)

Nesterov’s momentum accelerates GD to  

 and  

these are minimax optimal among first-order methods

O(1/t2) O(e− αt)



Cohen, Kaur, Li, Kolter, and Talwalkar. “Gradient descent on neural networks typically 
occurs at the edge of stability.” ICLR 2021

“edge of stability”

Experiment (3-layer net, MNIST)

large stepsize is 

• unstable 

• but faster 



Stepsize?

theory

practice

stable 
convergent

divergent

unstable  
convergent

, gradient flowη = o(1)

η = ∞

 flow≠

 flow≈

: (



(1/3) Seeking “simplest” answer

Wu, Bartlett*, Telgarsky*, and Yu*. “Large stepsize gradient descent for logistic loss: non-
monotonicity of the loss improves optimization efficiency.” COLT 2024

Peter Bartlett Bin YuMatus Telgarsky

…… deep  
learning

unstable  
convergence  

observed

linear  
regression

unstable  
convergence 

impossible

logistic  
regression

observable 
& provable



Assumption (bounded + separable) 

•  

•  unit vector , 

∥xi∥ ≤ 1, yi ∈ {±1}, i = 1,…, n

∃ w* min
i

yix⊤
i w* ≥ γ > 0

Logistic regression

wt+1 = wt − η∇L(wt)

L(w) =
1
n

n

∑
i=1

ln(1 + exp(−yix⊤
i w))

Classical theory 

For , and η = Θ(1) L(wt) ↓ L(wt) = Õ(1/t)

improved to  by NesterovÕ(1/t2)

smooth, convex 
non-strongly convex 



Stable phase:    from t and onwards 
EoS phase:         otherwise

L(wt) ↓

StableEoS

MNIST “0” vs “8”



Phase transition. GD exists EoS in  steps for 

 

Stable phase. From  and onwards 

τ

τ = Θ( max{η, n, n/η ln(n/η)})
τ

L(wτ+t) = Õ( 1
ηt )

Theorem

1. Convergence for every  

2. Large : faster in stable phase but stays longer in EoS 

3. Given #steps , if choose , then  

  and  

η

η

T ≥ Θ(n) η = Θ(T )

τ ≤ T/2 L(wT) = Õ(1/T2)

τ = Θ(η)

“fla

acceleration by  
large stepsize



A “non-quadratic” picture

 unit vector , ∃ w* min
i

yix⊤
i w* > γ > 0

L(w) = 𝔼̂ ln(1 + exp(−yx⊤w))
minimizer at  ∞

lim
λ→∞

L(λw*) = 0

self-bounded 

∥∇2L∥ ≤ L



Proof

Telescoping the sum…

≤ ∥wt − u∥2 + 2η⟨∇L(wt), u1 − wt⟩

 if  ≤ 0 u2 = w* ⋅ Θ(η)

≤ ∥wt − u∥2 + 2η(L(u1) − L(wt))

       => 

        

⟨∇L(w), w*⟩ < 0

∥∇L(w)∥ ≤ 1

∥wt+1 − u∥2 = ∥wt − u∥2 + 2η⟨∇L(wt), u − wt⟩ + η2∥∇L(wt)∥2

= ∥wt − u∥2 + 2η⟨∇L(wt), u1 − wt⟩

+η2(⟨∇L(wt), 2u2/η⟩ + ∥∇L(wt)∥2)



Two extensions

minimizer at  ∞

lim
λ→∞

L(λw*) = 0

self-bounded 

∥∇2L∥ ≤ L

unstable 
convergence under 
finite minimizer

large stepsizes for 
GD variants

e.g. regularization

finite minimizer

e.g. adaptive GD 
[Ji & Telgarsky 2021]

enabling “tricks”



(2/3) Large stepsize for adaptive GD

Zhang, Wu, Lin, Bartlett. “Minimax optimal convergence of gradient descent in logistic 
regression via large and adaptive stepsizes.” ICML 2025

Peter BartlettRuiqi Zhang Licong Lin

self-bounded 

∥∇2L∥ ≤ L
large stepsizes for 

GD variants
e.g. adaptive GD 
[Ji & Telgarsky 2021]

enabling “tricks”



Adaptive GD

wt+1 = wt − η((−ℓ−1)′￼∘ L(wt))∇L(wt)

≈ wt −
η

L(wt)
∇L(wt)

L(w) =
1
n

n

∑
i=1

ℓ(yix⊤
i w) ℓ(t) = ln(1 + exp(−t))

[Ji & Telgarsky, 2021]  

For , and η = Θ(1) L(wt) ↓ L(wt) ≤ exp(−Θ(t))

wt+1 = wt − η∇ϕ(wt) ϕ(w) = − ℓ−1(L(w))

≈ ln∑ exp(−yix⊤
i w)

aa
a

large stepsize makes adaptive GD even faster



Theorem
Assume separability with margin . For , we have 

,   where 

γ t ≥ 1/γ2

L(w̄t) ≤ exp( − Θ(γ2ηt)) w̄t =
1
t

t

∑
k=1

wk

1. Arbitrarily small error in  steps 

   for    

2. Averaged iterate, no “stable phase” 

3. small   <   large   <   small adaptive   <<   large adaptive

1/γ2

lim
η→∞

L(w̄t) = 0 t = 1/γ2

Õ(1/ϵ1/2)Õ(1/ϵ) O(ln(1/ϵ)) O(1)

no more “fla

≤ exp(−Θ(η))



Theorem (lower bound)
,   with margin  such that: for any first-

order batch method 

   =>   

∀w0 ∃ (xi, yi)n
i=1 γ

min
i

yix⊤
i wt > 0 t ≥ Ω(1/γ2)

adaptive GD + large stepsize = minimax optimal

First-order batch method: 

 

where  for any 

wt ∈ w0 + 𝗌𝗉𝖺𝗇{∇L(w0), …, ∇L(wt−1)}

L(w) = 𝔼̂ℓ(yx⊤w) ℓ



(3/3) Large stepsize under finite minimizer

Wu*, Marion*, and Bartlett. “Large stepsizes accelerate gradient descent for regularized 
logistic regression.” arXiv:2506.02336

Peter BartlettPierre Marion

minimizer at  ∞

lim
λ→∞

L(λw*) = 0

unstable 
convergence under 
finite minimizere.g. regularization

finite minimizer



Regularized logistic regression

wt+1 = wt − η∇L̃(wt)

L̃(w) = L(w) +
λ
2

∥w∥2 L(w) =
1
n ∑

i

ℓ(yix⊤
i w)

-strongly convex, -smooth,  

finite minimizer , 

λ Θ(1) κ = Θ(1/λ)

wλ ∥wλ∥ = O(ln(1/λ))

Classical theory 

For , and  for η = Θ(1) L̃(wt) ↓ L̃(wt) − min L̃ ≤ ϵ t = O(κ ln(1/ϵ))

Õ(1/λ)

improved to  by NesterovÕ(1/λ1/2)



Theorem (small )λ
Assume separability and  

       

Phase transition. GD exists EoS in  steps for  

 

Stable phase. From  and onward 

λ ≤ Θ( 1
n ln n ) η ≤ Θ( min { 1

λ1/2
,

1
nλ })

τ

τ := max{η, n, n/η ln(n/η)}

τ

L̃(wτ+t) − min L̃ ≲ exp(−ληt)

for small , large stepsize GD matches Nesterovλ

τ = Θ(1/λ1/2)

ηmax = Θ(1/λ1/2)

t = Θ(ln(1/ϵ)/λ1/2)



ηmax = Θ(1/λ1/3)
Theorem (general )λ
Assume separability and  

,      

Phase transition. GD exists EoS in  steps for  

 

Stable phase. From  and onward 

 

λ ≤ Θ(1) η ≤ Θ(1/λ1/3)

τ

τ := Θ(η2)

τ

L̃(wτ+t) − min L̃ ≲ exp(−ληt)

for general , large stepsizes is faster than small stepsizesλ
Õ(1/λ2/3) Õ(1/λ)

τ = Θ(1/λ2/3)

t = Θ(ln(1/ϵ)/λ2/3)



A new picture
R(w) =

λ
2

∥w∥2L(w) = 𝔼̂ℓ(yx⊤w)

EoS. , , “overshoot” 

Stable. “move back”

L̃ ≈ L R ≤ Θ(1)

sup ∥wt∥ = Θ(η) = 𝗉𝗈𝗅𝗒(1/λ)

∥wλ∥ = O(ln(1/λ))



Stepsize diagram

stable 
convergent

divergent

unstable  
convergent

, gradient flowη = o(1)

η = ∞

locally  
convergent

(λ ln(1/λ))−1

λ−1/2

λ−1/3

1

λ−1

generic support vectors
unknown global behavior

match Nesterov

sample size independent



(4/3) More results
• generalization 

• SGD 

• other loss functions

Wu, Bartlett*, Telgarsky*, and Yu*. “Large stepsize gradient descent for logistic loss: non-
monotonicity of the loss improves optimization efficiency.” COLT 2024 

Zhang, Wu, Lin, Bartlett. “Minimax optimal convergence of gradient descent in logistic 
regression via large and adaptive stepsizes.” ICML 2025 

Wu*, Marion*, and Bartlett. “Large stepsizes accelerate gradient descent for regularized 
logistic regression.” arXiv:2506.02336 

——————— 

Cai, Wu, Mei, Lindsey, and Bartlett. “Large stepsize GD for non-homogeneous two-layer 
networks: margin improvement and fast optimization.” NeurIPS 2024  

Cai*, Zhou*, Wu, Mei, Lindsey, and Bartlett. “Implicit bias of gradient descent for non-
homogeneous deep networks.” ICML 2025

• networks in kernel regime 

• two-layer networks with linear teacher 

• implicit bias



Contribution

theory

practice

stable 
convergent

divergent

unstable  
convergent

, gradient flowη = o(1)

η = ∞
Provable unstable convergence 
in three cases
Next: a general theory?


