Reimagining Gradient Descent

Large Stepsize, Oscillation, Acceleration
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Gradient descent

w, =w —[nVL(w)

“GD = discrete time gradient flow” Cauchy, 1847

dw=—-VLw)dt = dL(w)= VLw)' dw
= —||VL(w)||*dt
= Lw) |

because of stepsize, GD # discrete time flow



Small stepsize for stability

L(w,) = L(w —nVL(w))

2 W+
= L(w) = nl[VLW)||* + % VLW)' VEL) VL(W) /.
.

< L(w) - nIIVL(W)Hz(

y)
sup || V2L( -)||

n <

Descent lemma:

for small 17, L(w,) decreases monotonically

for , L(w)) in “bad” cases n <l



Classical theory

Let L be 1-smooth with a finite minimizer w*. For GD withn = 1,

descent lemma Lw) |
[wo — w||>
2t

convexity Lw)—minL <
a-strong convexity L(w,)— minL < e~ *(L(w,) — min L)
Nesterov’s momentum accelerates GD to

O(1/t*) and O(e™ V)

these are minimax optimal among first-order methods



Experiment (3-layer net, MNIST)

102 —— n=0.1 ' '
| e large stepsize is
101'5
g  unstable
= 10" -
g ~ - but faster
1072
10—3_- . . . L

0 200 400 600 800 1000
iteration

“edge of stability”

Cohen, Kaur, Li, Kolter, and Talwalkar. “Gradient descent on neural networks typically
occurs at the edge of stability” ICLR 2021



Stepsize?

divergent . (

convergent 7 flow
stable
~ flow
convergent

n = o(1), gradient flow



(1/3) Seeking “simplest” answer

logistic deep

regression learning

nsiale  observable
convergence
impossible & provable observed

Matus Telgarsky Bin Yu

Wu, Bartlett*, Telgarsky*, and Yu*. “Large stepsize gradient descent for logistic loss: non-
monotonicity of the loss improves optimization efficiency.” COLT 2024



Logistic regression

-
L(w) = Zln I +exp(—yx; w)) <

=1 \_

smooth, convex

non-strongly convex

~N

J

W1 =w,—nVL(w,)

Assumption (bounded + separable)
il < 1L,y e{xl},i=1,...,n

» 3 unit vector w*, min y,x; "Wt >y >0
l

Classical theory

Forn = O(1), L(w,) | and L(w,) = O(1/1)

improved to O(1/t%) by Nesterov



MNIST 0" vs 8"

Stable phase: L(w,) | from t and onwards
EoS phase: otherwise



Theorem

Phase transition. GD exists EoS in 7 steps for

T = @( max{»n, n, n/n ln(n/ﬂ)}) { 7 = O() J

Stable phase. From 7 and onwards

L(w,,,) = 9, (i) <{ “flow rate” J

nt

1. Convergence for every 7
2. Large n: faster in stable phase but stays longer in E0S

3. Given #steps T > ®(n), if choose n = O(T), then
acceleration by

T < T/2 and L(w;) = O(1/T*) large stepsize



A “non-quadratic” picture
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minimizer at oo

lim L(Aw™*) =0

A— 00

self-bounded

VL) < L



Proof

Wiy = ull® =

(VL(w), w*) < 0

W, — U

W, — U

VLWl <1

< |[w, — MHZ + 23¢ VL(w,), uy — Wt>

=>

2

24+ 20({VLW,), u; —w,)

2n{VL(w),u —w,)

IV Lw)II?

+r2(([(VLO8), 2u5/m) + 1V LOw)IP)

< 0ifu, =w* - 0(n)

< |lw, — ull* + 2n(L(u;) — L(w,))

Telescoping the sum...



Two extensions

finite minimizer

minimizer at oo unstable
lim LOw*) = 0 ﬁ convergence under
P N e.g. regularization finite minimizer
enabling “tricks”
self-bounded large stepsizes for
IV2L|| < L GD variants

e.g. adaptive GD
[Ji & Telgarsky 2021]



(2/3) Large stepsize for adaptive GD

enabling “tricks”

self-bounded large stepsizes for

GD variants

2
IVEL] < L e.g. adaptive GD

[Ji & Telgarsky 2021]

Ruiqgi Zhang Licong Lin

Zhang, Wu, Lin, Bartlett. “Minimax optimal convergence of gradient descent in logistic
regression via large and adaptive stepsizes.” ICML 2025



Adaptive GD

1 n
L(w) = - ; £ (yx T w) (1) = In(1 + exp(—1))

Wil = W, — n((—f‘l)’ o L(wt)) VL(w,

-

%

< w, ! VL(w,) <
L(w,)

\_

adapt to
curvature

~

J

Wit = W — nvVow,) dw)=— ?/ﬂ_l(L(W))

~ In Z exp(—y

[Ji & Telgarsky, 2021]
Forn = 0O(1), L(w,) | and L(w,) < exp(—0(?))

large stepsize makes adaptive GD even faster

l

_l_



Theorem

Assume separability with margin y. For ¢t > 1/y?, we have

1 A
L(w,) < exp( — O@Fn0)), where i, =— ) w,
/\ ! k=1

(< exp-0n)]

1. Arbitrarily small error in 1/y* steps

lim L(w,) =0 for t=1/y?

H—>0

2. Averaged iterate, no “stable phase” {no more “flat” regionJ

3. small < large < small adaptive << large adaptive

O(1/¢) O(1/e"?) O(n(1/¢)) 0(1)



Theorem (lower bound)

Vwy, 3 (x;,¥;):_, with margin y such that: for any first-
order batch method

min yxiw, >0 = 1> Q(1/y%)

l

First-order batch method:

w, € Wy + span{ VL(w), ..., VL(w,_;)}

A

where L(w) = EZ(yx 'w) for any £

adaptive GD + large stepsize = minimax optimal



(3/3) Large stepsize under finite minimizer

finite minimizer

minimizer at co unstable

lim LUw*) = 0 convergence under
11mM w — , , _ c . .

1 00 e.g. regularization finite minimizer

Pierre Marion Peter Bartlett

Wu*, Marion*, and Bartlett. “Large stepsizes accelerate gradient descent for regularized
logistic regression.” arXiv:2506.02336



Regularized logistic regression

- A 1
L(w) = L(w) [w]]* L(w) = — Z C (yl-x-T W)

2 p :

l

W1 =W, —n VLW, o ¢
A-strongly convex, ®(1)-smooth, k = O(1/4) : ® ©
finite minimizer w,, ||w,|| = O(In(1/4)) @
Classical theory é( 1/4)

Forn = (1), Z(wt) | and Z(wt) —min L < e fort = O(xIn(1/¢))

improved to O(1/1'?) by Nesterov



Theorem (small /) [ @(1/@1/20
Nmax =

Assume separability and \V4

1 1 1
A1 <0 < O min :
= <n1nn> = ( 1 {,11/2 ml})

Phase transition. GD exists EoS in 7 steps for

7 ;= max{n,n,n/yIn(n/n)} {T = @(l/ﬂl/z)J

Stable phase. From 7 and onward

Z(WT ) — min L < exp(—Ant)
/\

[r = @(ln(l/e)//ll/z)j
for small 4, large stepsize GD matches Nesterov




Theorem (general A)
- 1/3
Assume separability and [’@ax = O(1/4 )j

A<0(), n<001/4"7)

Phase transition. GD exists EoS in 7 steps for

7= O(n?) {T = @(1//12/3)J

Stable phase. From 7 and onward

Z(WT wr) — min L < exp(—Ant)

| f = @(ln(l/e)//lm)j

for general A, large stepsizes is faster than small stepsizes

O(1/1%3) O(1/1)




A new picture

A A
. L(w) =ELGx"w) R(w) = 5||W||2

EoS. L ~ L, R < ©(1), “overshoot” |lw,|| = O(In(1/4))

Stable. “move back” sup [|w,|| = O(n) = poly(1/4)



Stepsize diagram

=00

y ,
divergent
(/1 ln(l//i))_1 generic support vectors
ocally nknown global behavior
o convergent . wng enavio
2-
» unstable match Nesterov
- convergent o
A 7 sample size independent
1
stable
convergent

n = o(1), gradient flow



(4/3) More results

- generalization . networks in kernel regime
» SGD . two-layer networks with linear teacher

- other loss functions . implicit bias

Wu, Bartlett*, Telgarsky*, and Yu*. “Large stepsize gradient descent for logistic loss: non-
monotonicity of the loss improves optimization efficiency.” COLT 2024

Zhang, Wu, Lin, Bartlett. “Minimax optimal convergence of gradient descent in logistic
regression via large and adaptive stepsizes.” ICML 2025

Wu*, Marion*, and Bartlett. “Large stepsizes accelerate gradient descent for regularized
logistic regression.” arXiv:2506.02336

Cai, Wu, Mei, Lindsey, and Bartlett. “Large stepsize GD for non-homogeneous two-layer
networks: margin improvement and fast optimization.” NeurIPS 2024

Cai*, Zhou*, Wu, Meli, Lindsey, and Bartlett. “Implicit bias of gradient descent for non-
homogeneous deep networks.” ICML 2025



Contribution

= oo

Provable unstable convergence
in three cases

divergent

Next: a general theory?

‘ S
,_ convergent
/:

stable
theory
convergent

n = o(1), gradient flow




