GD for Logistic Regression

Benelfits of Early Stopping
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Logistic regression

v, €E{x1}, x €RY i<n highdim d > n
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Gradient descent: w,, | = w, — nVi(wt) wy = 0



Asymptotic implicit bias

~J/

r

W = arg max miny.x, w <
Iwll=1" i

[Soudry et al, 2018; Ji & Telgarsky, 2018; ... Wu et al, 2023]
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Is max-margin the full story?

.

max-margin
direction

~

J




Missing aspects
- Divergent norm (bad for metrics other than zero-one)

- Max-margin feels unstable

» Why logistic not hinge/SVM loss?

« Requiring exp time "\‘
Wy o 0 In In(7) o
il T e Early stopping?

HWtH — ®(ln t)




Benetits of early stopping

1. Consistency & calibration
2. Advantages over interpolation

3. Connections to lx-regularization

Peter Bartlett Matus Telgarsky Bin Yu

Wu, Bartlett, Telgarsky, and Yu. “Benefits of Early Stopping in Gradient Descent for
Overparameterized Logistic Regression” arXiv:2502.13283



Metrics

Logistic L(w) := E¢(yx"'w) £() :=1In(l1 + e

Zero-one  Z(w) := Pr(yx'w < 0)

Calibration C(w) := [t \s(xTW) — Pr(y = 1|x) ‘2
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Consistency (logistic or zero-one)
L(w,) - minL or Z(w, — minZ

Calibration  C(w,) = 0



Data model [ oy ) = o | Jsomoid)
x~N0,2) Pr(y=1]|x)

s(xTw*)

fortr(X) < 1and ||w*||s <1 “notgrow with n”

[ allow ||w*|| = oo] “benign overtitting setup”

A. w*¥ minimizes L, Z, and C

B. Z(w) — min Z < 2,/C(w) < /24/L(w) — min L
|

C.mnlL > 1 ar;\\d minZzZ 2 1

[\
®(1) noise => overﬁtting]

logistic consistent => calibration
=> Zero-one consistent




implies calibration

Logistic risk bound g zer0-0ne

Let 7 S 1 so GD is stable. Pick stopping time ¢

Lw) < Lw*) < L(w,_y)
A
H(w*, k,) ]

[“best” rank-k projection]
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Proot ideas

For convex-smooth L and small 77, we have
2
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Lw) < L(u) < L(w,_;) ) S
\ [ —1 J Hwt—l — MH < HMH
- J

(local) Rademacher complexity J

many loose places; unclear how to improve :(



Rethlnklng GD Issues of t = o0:

coming next: * << 00 1. divergent norm
1 2. interpolation

With an oracle-chosen stopping time, GD is W
. consistent in logistic, w/ “poly” rate

« calibrated

e consistent in zero-one

for every instance withtr(X) < 1, [[w*|ls S 1

dimension arbitrarily high
lo>-norm arbitrarily large



[ssue of divergent norm

We have (inconsistencyj (poor calibration)

Lw,)=00, Cwy) =1

- ™)
applies to GD when
for all (W), such that overparameterized |
, : t v
Iim HWtH = 00, lmm exists
[[wi

metrics sensitive to estimator norm
but |[w_ || = o0
inherent in “ERM”




Issue of interpolation

Assume that ||[w*||x = 1 and > V2w* is k-sparse. If

n2>klnk, rank(2) =nlnn

then for every interpolator w, w.h.p.
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min y,x,' W > OT Z(W) — min Z >

. !

Inn

N\

\

Conjecture for
max-margin:
a decaying

condition of },

indep. of n
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. Wil >\ 1
Z(w)) —min Z < sqrt \/_ FllwE Is ) = poly| —

n

n

for “simple” problems k= ®(1) or ||w*|| = O(1)



Benetits of early stopping

early-stopped asymptotic
logistic consistency always yes always no
calibration always yes always no
zero-one risk “poly” “polylog”

GD passes
through w*

but eventually
diverges from it



Simulations
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GD and lx-regularization

W1 =w,—nV.L(w)

PN A 1
=argmin L(w,) + (VL(W,),u — w,) o |1 — thZ
u, = argmin L(u) 4 [|2¢]|?
24
preceding GD bounds hold for u, @ .’
(with similar looseness...) @ .

coming next: rigorous path comparison



Convex function

For all convex-smooth L, small #, and all £ > 0,

1
lw, — || < ﬁ\\wfl\ for A = nt

U w,

As aresult: Z(w, u;) < 7 0.585 <

L can be non-strictly convex
w* can be infinite

-
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Theory of l>-regu applies to GD
if it only uses norm




Separable logistic regression

Assume rank{support vectors} = rank{data}, then

= /lgt) — 00, |lw,—u 7 0

(izm ] ol il — oo

For dataset x; = (g),xz - (é),yl =y, = 1, where

0<y, <y<1, wehave

VAD, |w; = wll = Qnln [jw]]) = oo

paths diverge in two directions with different ratios




Contribution

- Implicit regularization via early stopping
 Calibration, consistency, l2-regu...

- Key diff: logistic vs. linear regression in high-dim

..\.

’ﬁ
-
-

="
-

W2 e’ 4€..-° \ :
L4
Y4 '
v 4 :
" v Early stopping?
|}
s -
A3




