GD for Logistic Regression

Benefits of Early Stopping

Jingfeng Wu

Logistic regression

$$y_i \in \{\pm 1\}, x_i \in \mathbb{R}^d, i \le n \text{ high dim } d > n$$

$$\mathcal{E}(t) := \ln(1 + e^{-t})$$

$$\widehat{L}(w) := \frac{1}{n} \sum_{i=1}^{n} \ell(y_i x_i^{\mathsf{T}} w)$$

"uniform convergen

Gradient descent: $w_{t+1} = w_t - \eta \nabla \widehat{L}(w_t)$ $w_0 = 0$

Asymptotic implicit bias

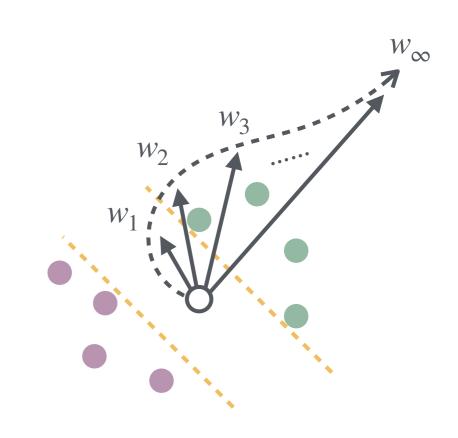
$$\tilde{w} := \underset{\|w\|=1}{\text{arg max min }} y_i x_i^{\mathsf{T}} w$$

[Soudry et al, 2018; Ji & Telgarsky, 2018; ... Wu et al, 2023]

If
$$\eta = \Theta(1)$$
, then as $t \to \infty$,

$$\|w_t\| \to \infty$$

$$\frac{w_t}{\|w_t\|} \to \tilde{w}$$



Is max-margin the full story?

Missing aspects

- Divergent norm (bad for metrics other than zero-one)
- Max-margin feels unstable
- Why logistic not hinge/SVM loss?
- Requiring exp time

$$\frac{w_t}{\|w_t\|} = \tilde{w} + O\left(\frac{\ln \ln(t)}{\ln(t)}\right)$$

$$||w_t|| = \Theta(\ln t)$$

Benefits of early stopping

- 1. Consistency & calibration
- 2. Advantages over interpolation
- 3. Connections to l₂-regularization

Peter Bartlett

Matus Telgarsky

Bin Yu

Wu, Bartlett, Telgarsky, and Yu. "Benefits of Early Stopping in Gradient Descent for Overparameterized Logistic Regression" arXiv:2502.13283

Metrics

Logistic
$$L(w) := \mathbb{E}\ell(yx^{\mathsf{T}}w)$$
 $\ell(t) := \ln(1 + e^{-t})$

Zero-one
$$Z(w) := \Pr(yx^{\mathsf{T}}w \le 0)$$

Calibration
$$C(w) := \mathbb{E} |s(x^T w) - \Pr(y = 1 | x)|^2$$

$$s(t) := \frac{1}{1 + \exp(-t)}$$

Consistency (logistic or zero-one)

$$L(w_n) \to \min L$$
 or $Z(w_n) \to \min Z$

Calibration
$$C(w_n) \to 0$$

Data model

$$x \sim \mathcal{N}(0, \Sigma)$$
 $\Pr(y = 1 \mid x) = s(x^{\mathsf{T}}w^*)$

for $\operatorname{tr}(\Sigma) \lesssim 1$ and $\|w^*\|_{\Sigma} \lesssim 1$ "not grow with n"

"benign overfitting setup"

A. w^* minimizes L, Z, and C

B.
$$Z(w) - \min Z \le 2\sqrt{C(w)} \le \sqrt{2}\sqrt{L(w) - \min L}$$

C. $\min L \gtrsim 1$ and $\min Z \gtrsim 1$

Logistic risk bound

implies calibration & zero-one

Let $\eta \lesssim 1$ so GD is stable. Pick stopping time t

$$\widehat{L}(w_t) \leq \widehat{L}(w_{0:k}^*) \leq \widehat{L}(w_{t-1})$$

Then w.h.p.

$$L(w_t) - \min L \lesssim \tilde{O}(1) \sqrt{\frac{\|w_{0:k}^*\|^2}{n}} + \|w_{k:\infty}^*\|_{\Sigma}^2$$

o(1) for some t_n^* as long as

"not grow with *n*"

$$o(1)$$
 for $k_n \uparrow$

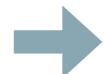
$$o(1)$$
 since $k_n \uparrow$ and $||w^*||_{\Sigma} \lesssim 1$

Proof ideas

For convex-smooth \widehat{L} and small η , we have

$$\forall u, t, \frac{\|w_t - u\|^2}{2\eta t} + \hat{L}(w_t) \le \hat{L}(u) + \frac{\|u\|^2}{2\eta t}$$

$$\widehat{L}(w_t) \le \widehat{L}(u) \le \widehat{L}(w_{t-1})$$



$$\widehat{L}(w_t) \le \widehat{L}(u)$$

$$||w_{t-1} - u|| \le ||u||$$

(local) Rademacher complexity

many loose places; unclear how to improve :(

Rethinking GD

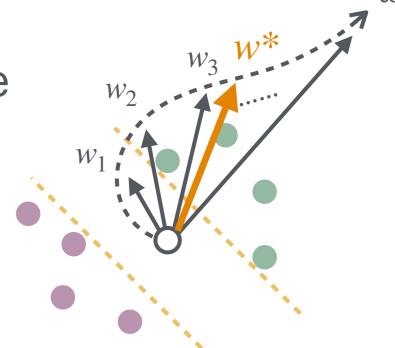
coming next: $t^* \ll \infty$

Issues of $t = \infty$:

- 1. divergent norm
 - 2. interpolation

With an oracle-chosen stopping time, GD is

- consistent in logistic, w/ "poly" rate
- calibrated
- consistent in zero-one



for **every** instance with $\mathrm{tr}(\Sigma) \lesssim 1$, $\|w^*\|_{\Sigma} \lesssim 1$

dimension arbitrarily high l₂-norm arbitrarily large

Issue of divergent norm

We have

inconsistency | poor calibration

$$L(w_{\infty}) = \infty, \quad C(w_{\infty}) \gtrsim 1$$

$$C(w_{\infty}) \gtrsim 1$$

for all $(w_t)_{t>0}$ such that

$$\lim \|w_t\| = \infty, \quad \lim \frac{w_t}{\|w_t\|} \text{ exists}$$

metrics sensitive to estimator norm

but
$$||w_{\infty}|| = \infty$$

inherent in "ERM"

Issue of interpolation

Assume that $||w^*||_{\Sigma} = 1$ and $\Sigma^{1/2}w^*$ is k-sparse. If

$$n \gtrsim k \ln k$$
, rank $(\Sigma) \approx n \ln n$

then for every interpolator \hat{w} , w.h.p.

$$Z(\hat{w}) - \min Z \gtrsim \frac{1}{\sqrt{\ln n}}$$

$$Z(w_t) - \min Z \lesssim \operatorname{sqrt}\left(\frac{\|w_{0:k}^*\|}{\sqrt{n}} + \|w_{k:\infty}^*\|_{\Sigma}^2\right) = \operatorname{poly}\left(\frac{1}{n}\right)$$

for "simple" problems $k = \Theta(1)$ or $||w^*|| = \Theta(1)$

Benefits of early stopping

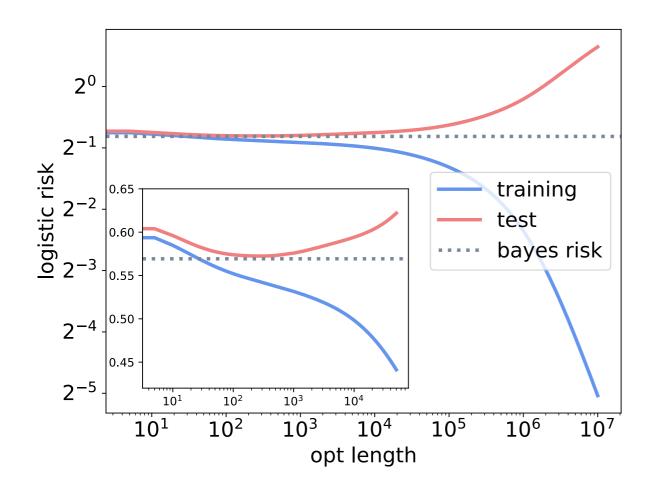
	early-stopped	asymptotic
logistic consistency	always yes	always no
calibration	always yes	always no
zero-one risk	"poly"	"polylog"

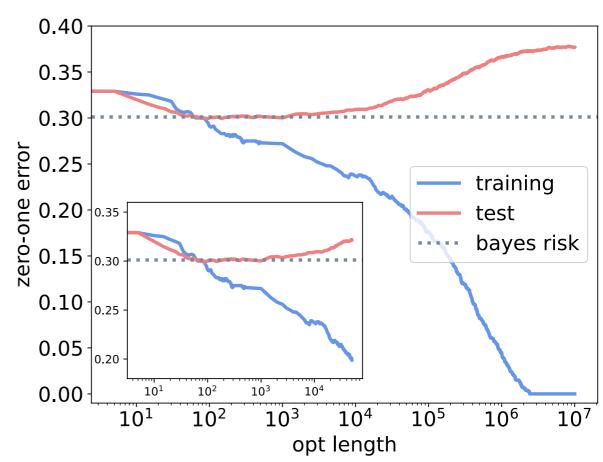
GD passes through *w**



but eventually diverges from it

Simulations





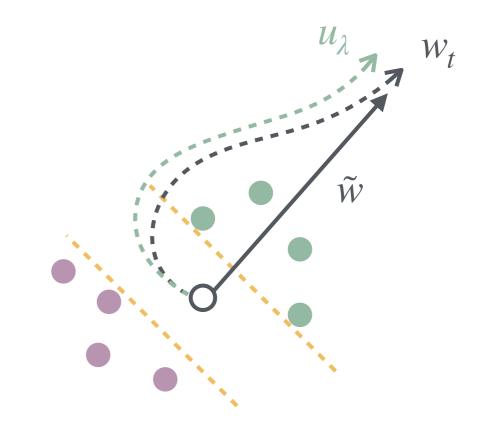
$$d = 2000, n = 1000, \lambda_i = i^{-2}, w^* = \underbrace{(1, ..., 1, 0, ...)}_{k=100}$$

GD and l₂-regularization

$$\begin{split} w_{t+1} &= w_t - \eta \, \nabla \widehat{L}(w_t) \\ &= \arg\min \widehat{L}(w_t) + \langle \, \nabla \widehat{L}(w_t), u - w_t \rangle + \frac{1}{2\eta} \|u - w_t\|^2 \end{split}$$

$$u_{\lambda} = \arg\min \widehat{L}(u) + \frac{1}{2\lambda} ||u||^2$$

preceding GD bounds hold for u_{λ} (with similar looseness...)



coming next: rigorous path comparison

Convex function

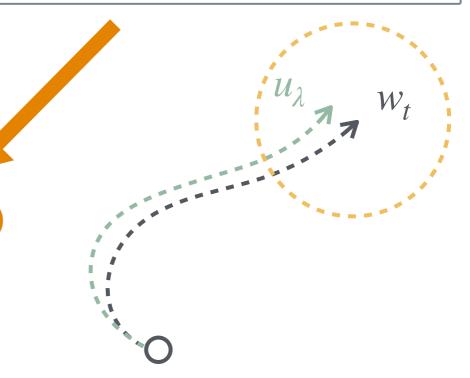
For all convex-smooth \widehat{L} , small η , and all t>0,

$$||w_t - u_\lambda|| \le \frac{1}{\sqrt{2}} ||w_t|| \quad \text{for } \lambda = \eta t$$

As a result: $\angle(w_t, u_\lambda) \le \frac{\pi}{4}$, $0.585 < \frac{\|w_t\|}{\|u_\lambda\|} < 3.415$

 \hat{L} can be non-strictly convex \hat{w}^* can be infinite

Theory of l₂-regu applies to GD if it only uses norm



Separable logistic regression

Assume $rank\{support\ vectors\} = rank\{data\}$, then

$$\exists \lambda(t) \to \infty, \quad ||w_t - u_{\lambda}|| \to 0$$

For dataset
$$x_1 = {\gamma \choose 0}$$
, $x_2 = {\gamma \choose \gamma_2}$, $y_1 = y_2 = 1$, where

 $0 < \gamma_2 < \gamma < 1$, we have

$$\forall \lambda(t), \quad \|w_t - u_\lambda\| = \Omega(\ln \ln \|w_t\|) \to \infty$$

paths diverge in two directions with different ratios

Contribution

- Implicit regularization via early stopping
- Calibration, consistency, l₂-regu...
- Key diff: logistic vs. linear regression in high-dim

