Berkelev **UNIVERSITY OF CALIFORNIA**

Background

$$w_{+} = w - \eta \nabla L(w)$$

How to choose stepsize / learning rate?

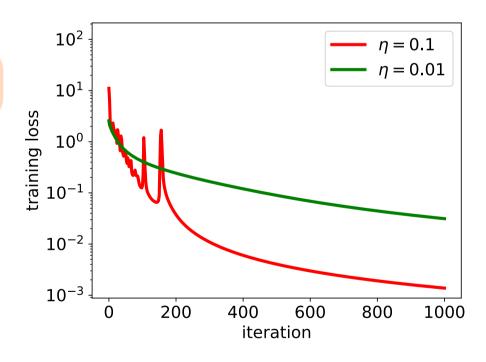
Descent Lemma

For small η , $L(w_t)$ decreases monotonically For large η , $L(w_t)$ diverges for quadratics

$$\begin{split} L(w_{+}) &= L(w - \eta \nabla L(w)) \\ &= L(w) - \eta \|\nabla L(w)\|^{2} + \frac{\eta^{2}}{2} \nabla L(w)^{\top} \nabla^{2} L(w) \nabla L(w) - O(\eta^{3}) \\ &\leq L(w) - \eta \left(1 - \frac{\eta}{2} \|\nabla^{2} L(w)\|_{2}\right) \|\nabla L(w)\|^{2} - O(\eta^{3}) \end{split}$$

Edge of Stability

large stepsize works better "spikes" or "edge of stability" unexplained by descent lemma



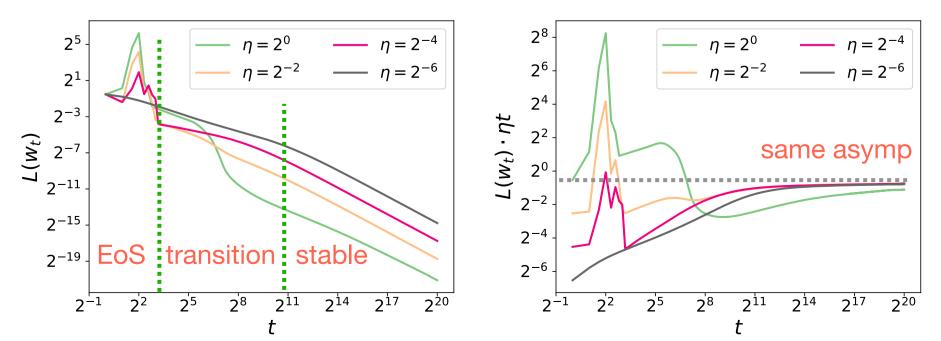
 $L(w) = w^2$

 $w_+ = (1 - 2\eta)w$

 $\eta > 1$

 $\eta < 1$

3-layer net + 1,000 samples from **MNIST**

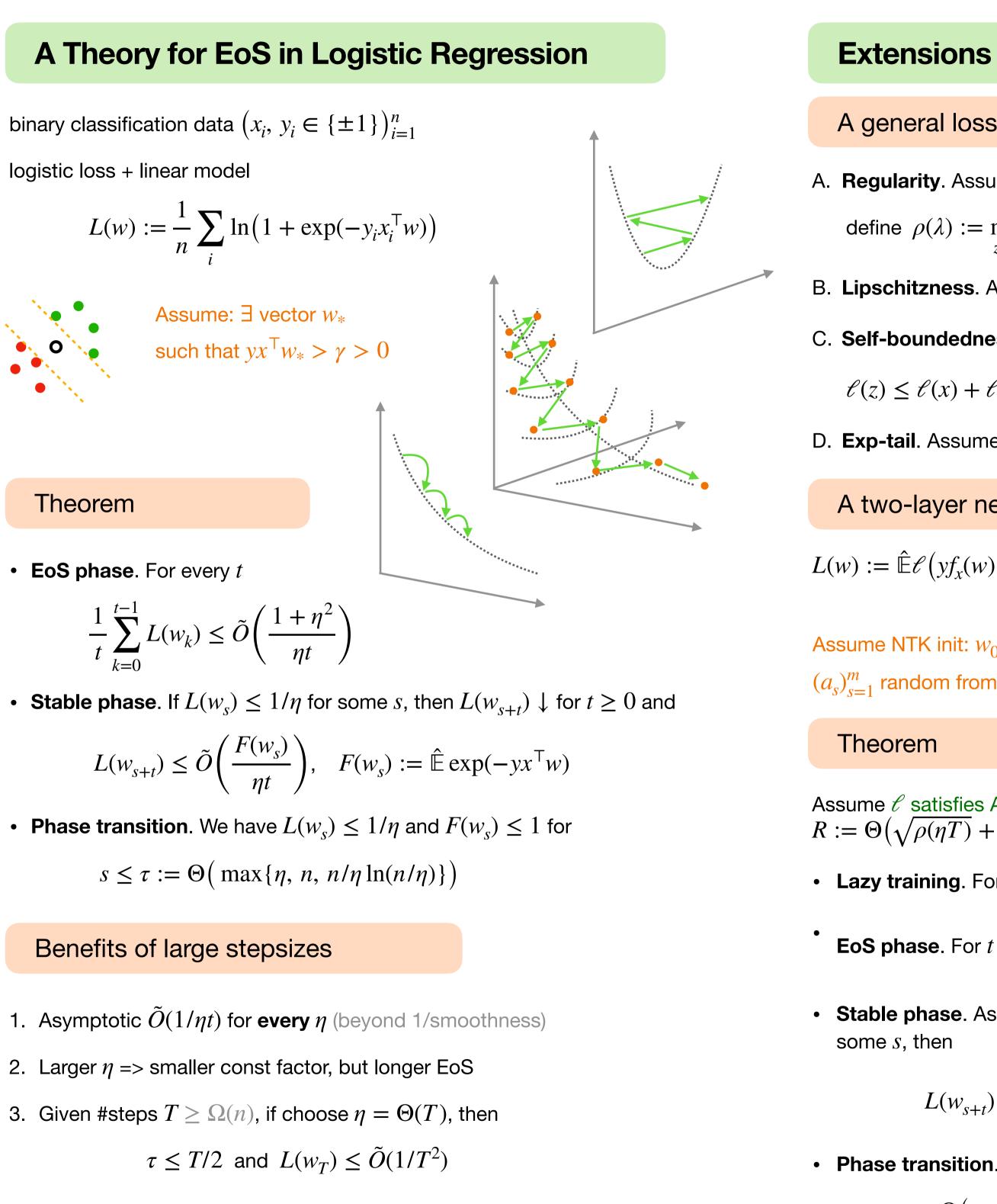


logistic regression + 1,000 samples from MNIST "0" or "8"

Large Stepsize GD for Logistic Loss **Non-Monotonicity of the Loss Improves Optimization Efficiency**

Jingfeng Wu¹, Peter Bartlett¹³, Matus Telgarsky², Bin Yu¹

¹UC Berkeley, ²New York University, ³Google DeepMind



"acceleration" by EoS w/o momentum or varying stepsizes

4. Theorem. In general, if not enter EoS, then $L(w_T) \ge \Omega(1/T)$

al loss function
$$\ell : \mathbb{R} \to \mathbb{R}_+$$

y. Assume
$$\ell$$
 is \mathscr{C}^2 , convex, \downarrow , and $\ell(+\infty) = 0$,

$$(\lambda) := \min_{z \in \mathbb{R}} \lambda \ell(z) + z^2, \quad \lambda \ge 1$$

B. Lipschitzness. Assume $g(\cdot) := |\ell'(\cdot)| \le C_g$

ndedness. Assume
$$g(\ \cdot\)\leq C_{eta} \ell(\ \cdot\)$$
 and

$$C(x) + \ell'(z - x) + C_{\beta} g(x)(z - x)^2$$
, for $|z - x| \le 1$

D. **Exp-tail**. Assume $\ell(\cdot) \leq C_{e}g(\cdot)$

A two-layer network (kernel regime)

$$(yf_x(w)), f_x(w) := \frac{1}{\sqrt{m}} \sum_{s=1}^m a_s \max\{x^{\mathsf{T}} w^{(s)}, 0\}, w \in \mathbb{R}^{md}$$

Assume NTK init: $w_0 \sim \mathcal{N}(0, I_{md})$; Assume: "separable" $(a_s)_{s=1}^m$ random from $\{\pm 1\}$ & fixed in NTK RKHS

•

Assume ℓ satisfies A-B. Fix *T*, assume $m \ge \Omega(R^2)$ for $R := \Theta(\sqrt{\rho(\eta T)} + \eta)$. Then

• Lazy training. For $t \leq T$, we have $||w_t - w_0|| \leq R$

e. For
$$t \le T$$
, we have $\frac{1}{t} \sum_{k=0}^{t-1} L(w_k) \le O\left(\frac{\rho(\eta t) + \eta^2}{\eta t}\right)$

• Stable phase. Assume ℓ also satisfies C. If $L(w_s) \leq \Theta(1/(\eta + n))$ for

$$L(w_{s+t}) \downarrow \text{ and } L(w_{s+t}) \leq O\left(\frac{\rho(\eta t)}{\eta t}\right), \ s+t \leq T$$

• Phase transition. We have $L(w_s) \leq \Theta(1/(\eta + n))$ for $s \leq \tau$, where

$$\tau := \Theta \Big(\max\{\psi^{-1}(\eta + n), \eta(\eta + n)\} \Big), \ \psi(\lambda) := \lambda/\psi(\lambda)$$

or $\tau := \Theta(\max\{\eta, n \ln(n)\})$ if ℓ also satisfies D

Contributions: (1) EoS => faster optimization (2) open landscape (3) versatile techniques