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• Stable phase. If  for some , then for  and
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• Phase transition. We have  and  for
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How to choose stepsize / learning rate?

binary classification data 


logistic loss + linear model
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1. Asymptotic  for every  (beyond 1/smoothness) 

2. Larger  => smaller const factor, but longer EoS 


3. Given #steps , if choose , then 
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Õ(1/ηt) η

η

T ≥ Ω(n) η = Θ(T )

τ ≤ T/2 L(wT) ≤ Õ(1/T2)

3-layer net + 1,000 samples 
from MNIST

logistic regression + 1,000 samples from MNIST “0” or “8”

Descent Lemma

Edge of Stability

large stepsize works better 

“spikes” or “edge of stability”


unexplained by descent lemma Benefits of large stepsizes

Theorem

A. Regularity. Assume  is , convex, , and , 


      define  


B. Lipschitzness. Assume 


C. Self-boundedness. Assume  and 


      , for 


D. Exp-tail. Assume 

ℓ 𝒞2 ↓ ℓ(+∞) = 0

ρ(λ) := min
z∈ℝ

λℓ(z) + z2, λ ≥ 1

g( ⋅ ) := |ℓ′ ( ⋅ ) | ≤ Cg

g( ⋅ ) ≤ Cβℓ( ⋅ )

ℓ(z) ≤ ℓ(x) + ℓ′ (z − x) + Cβg(x)(z − x)2 |z − x | ≤ 1

ℓ( ⋅ ) ≤ Ceg( ⋅ )

Assume  satisfies A-B. Fix , assume  for 
. Then


• Lazy training. For , we have  


• EoS phase. For , we have 


• Stable phase. Assume  also satisfies C. If  for 
some , then 


 and ,  


• Phase transition. We have  for , where
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or  if  also satisfies D

ℓ T m ≥ Ω(R2)
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τ := Θ( max{ψ−1(η + n), η(η + n)}) ψ(λ) := λ /ψ(λ)

τ := Θ(max{η, n ln(n)}) ℓ
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as max{x⊤w(s), 0} w ∈ ℝmd

A general loss function ℓ : ℝ → ℝ+

A two-layer network (kernel regime)

Assume NTK init: ; 


 random from  & fixed

w0 ∼ 𝒩(0, Imd)
(as)m

s=1 {±1}

Theorem

“acceleration” by EoS 
w/o momentum or varying stepsizes

4. Theorem. In general, if not enter EoS, then L(wT) ≥ Ω(1/T )

EoS transition stable

same asymp

Assume:  vector  


such that 

∃ w*

yx⊤w* > γ > 0

Assume: “separable” 

in NTK RKHS

Contributions: (1) EoS => faster optimization  
(2) open landscape (3) versatile techniques


