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New Insights about SGD
stepsize, risk convergence, and implicit regularization



Modern machine learning

ChatGPT

AlphaGo

Google assistant

At their core is 


deep learning



Deep learning oversimplified

data x

90% dog

5% cat

2% glasses

…

prediction 

f(x)

100% dog

0% cat

0% glasses

…

label ymodel  

(with parameter )

f( ⋅ )
w

Repeat for TONs of  (x, y) + some tips/tricks/tuning



Current DL practice

Usual formula:


1. one graduate student


2. one model


3. performance numbers on a few standard test sets


4.  yay. we. rock.


5. one Ph.D.

https://www.slideshare.net/npinto/highperformance-computing-needs-machine-learning-and-vice-versa-nips-2011-big-learning

“Alchemy”, largely trial & error

“This is Graduate 
Student Descent”



Current DL theory

blind men and an elephant

• parameters: universal 
approximation, …


• random initialization: NTK, … 


• low training error: benign 
overfitting, …


• SGD: implicit bias, …


• and many more

Would theory, from an incomplete picture, be useful?



This talk: better theory, better trial & error

the incomplete theory

all sorts of applications

its a feature not a bug  
can try that

only got two grad students  
what to play with



Part 1. Stepsize



(Stochastic) Gradient Descent

w+ = w − η ⋅ ∇ℓ(w)

Robbins & Monro, 1951

stochastic approximation
Cauchy, 1847

gradient

descent

Werbos, 1974

backpropagation

Widow & Hoff, 1960

adaptive linear neuron 

Rosenblatt, 1958

perceptron

making how much update? 

AKA., stepsize / learning rate?



Optimization theory oversimplified

ℓ(w) = 10w2

η < 0.1

w ← w − η ⋅ 20w

η > 0.1

quadratic landscape

ℓ(w+) = ℓ(w − η ⋅ ∇ℓ(w))

= ℓ(w) − η ⋅ ∥∇ℓ(w)∥2 +
η2

2
⋅ ∇ℓ(w)⊤ ⋅ ∇2ℓ(w) ⋅ ∇ℓ(w) − O(η3)

≤ ℓ(w) − η ⋅ (1 −
η
2

⋅ ∥∇2ℓ(w)∥2) ⋅ ∥∇ℓ(w)∥2 − O(η3)

[descent lemma]


For small ,  decreases monotonically, GD works 


For large , GD does not work for quadratics

η ℓ(wt)

η



Numbers in DL (classification problem)
3-layer net + 1,000 samples from MNIST+ GD with const-stepsize

small stepsize works; 

large stepsize also works and works better in the long run



Limitations of the old picture

old theory picture predicts green curve, but fails predicting red curve

DL classification (cross-entropy)

η < 0.1

η > 0.1

ℓ(w) = 10w2

w ← w − η ⋅ 20w
opt theory (quadratic)



Logistic regression, revisited
[WBL’23] In the NN training (minimizing 
a cross-entropy loss), if


• the model is linear, i.e., ,


• the datasets can be perfectly fitted,


Then GD, with any constant stepsize, 
minimizes the fitting error.

f(x) = x⊤w

Wu, Jingfeng, Vladimir Braverman, and Jason D. Lee. "Implicit Bias of Gradient Descent for Logistic Regression at the Edge of 
Stability." NeurIPS 2023

[open/ongoing] 


Benefits of large stepsize?



Rethinking optimization theory
• in DL (classification), Taylor approx. is limited (b/c its local)


• “valley” is more stable than “quadratic basin”


• descent lemma isn’t a golden rule (more likely a bad rule)



Part 2. Implicit Regularization



Statistical learning theory oversimplified

sup
w∈ℋ

|R(w) − R̂n(w) | ≲
log |ℋ |

n

complexity uncontrolled 

=> overfitting

1. Generalization: empirical fit vs. complexity control

2. #Param (uniformly) controls complexity

1 is (always) a good advice, 2 is debatable

R(w) − R(w*) = R(w) − R̂n(w) + R̂n(w) − R̂n(w*) + R̂n(w*) − R(w*)

≤ 𝙴𝚖𝚙𝚒𝚛𝚒𝚌𝚊𝚕 + 2 ⋅ sup
w∈ℋ

|R(w) − R̂n(w) |



What controls complexity in DL?

NN with 11,330 parameters 

fitting 2,000 samples from FashionMNIST 

without explicit regularization
Wu, Jingfeng, Difan Zou, Vladimir Braverman, and Quanquan Gu. "Direction Matters: On the Implicit Bias of Stochastic Gradient 

Descent with Moderate Learning Rate." ICLR 2021

1. hypothesis class size


• #params


2. explicit regularization 


• weight decay, dropout,…


3. implicit regularization 


• SGD, a simple learning rule

How does SGD regularize the model?

far from overfitting



Linear / ReLU regression, revisited

,    y = ϕ(x⊤w*) + 𝒩(0,1), ∥w*∥2 ≤ 1 x ∼ 𝒩(0, H)

minimize    R(w) = 𝔼(ϕ(x⊤w) − y)2, w ∈ ℝd

with n iid samples:  (x1, y1), …, (xn, yn)

Distributional assumption (simplified)

wt = wt−1 − ηt ⋅ (ϕ(x⊤
t wt−1) − yt) ⋅ xt, t = 1,…, n

η

0.1η
0.01η

n/log n Steps

SGD / Perceptron

 or ϕ = 𝚒𝚍 max{ ⋅ , 0}



Implicit complexity control

[ZWBGK’21, WZBGK’22, WZCBGK’23] 


𝙱𝚒𝚊𝚜 +
𝙳𝙸𝙼

n
≲ 𝔼R(wn) − min R ≲ 𝙱𝚒𝚊𝚜 +

𝙳𝙸𝙼
n

• Zou, Difan, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham Kakade. "Benign overfitting of constant-stepsize sgd for linear 
regression." COLT 2021. 

• Wu, Jingfeng, Difan Zou, Vladimir Braverman, Quanquan Gu, and Sham Kakade. "Last iterate risk bounds of sgd with decaying 
stepsize for overparameterized linear regression." ICML 2022 

• Wu, Jingfeng, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Sham M. Kakade. "Finite-Sample Analysis of Learning 
High-Dimensional Single ReLU Neuron.” ICML 2023

problem instance

co
m

pl
ex

ity

DIM

# params

SGD

complexity

, a function of , , and , controls the complexity 𝙳𝙸𝙼 ≤ d n η H



Implicit complexity control
𝙳𝙸𝙼 := #{λi ≥

1
nη } + n2η2 ⋅ ∑

λi< 1
nη

λ2
i  denote eigenvalues of (λi)i≥1 H = 𝔼[xx⊤]

eigenvalue index

ra
tio

(nη ⋅ λi)2

1

hyperparameters 

# params

DIM

 is small when eigenvalues decay fast


SGD exploits a “low-dim” structure in data

𝙳𝙸𝙼



1. ridge with large  <=> SGD with small λ η

SGD Ridge Regression [TB 2020]

Bias

Noise

“Dim”

“Steps”

σ2

(λ + ∑i>k* λi)2

n2
⋅ ∥w*∥2

H−1
0:k*

+ ∥w*∥2
Hk*:∞

k* +
n2

(λ + ∑i>k* λi)2 ∑
i>k*

λ2
i

λ1 ≥ … ≥ λk* ≂
1

ηK
≥ … λ1 ≥ … ≥ λk* ≂

λ + ∑i>k* λi

n
≥ …Optimal k*

n

∏
t=1

(I − ηtH)w*
2

H

k* + η2K2 ∑
i>k*

λ2
i

nK = n/log n

σ2

Excess Risk = Bias + Noise * Dim / Steps

2. SGD has smaller bias in the head



Implicit vs. explicit regularization

Zou, Difan, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, Dean P. Foster, and Sham Kakade. "The benefits of implicit 
regularization from sgd in least squares problems." NeurIPS 2021

tune SGD before tuning weight decay :) 

[ZWBGFK’21] Fix a set of “natural” least square problems (opt is not hard & 
label is noisy). 


Assume an oracle tunes both SGD and ridge to their best on each problem 
instance. Let  and  be their sample complexity to attain the same rate.


• For every problem instance:                


• There exist a problem instance:          

m n

m ≲ n log2(n)

n ≥ m2/log4(m)

tuned SGD inflates at most poly-log more samples than tuned ridge

tuned ridge can inflate poly more samples than tuned SGD



Rethinking statistical learning theory
• in DL, complexity isn’t controlled by #params 


• complexity is largely controlled by simple learning rules


• stepsize balances empirical fit and complexity control

problem instance

co
m

pl
ex

ity

DIM

# params

SGD

complexity



Conclusions

• optimization and statistical learning 
theory are still insightful 


• but need revisions in deep learning


• large stepsize, implicit regularization


• more effective trial & error if things 
are understood better

my website


