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Modern machine learning

AlphaGo

At their core Is

deep learning

ChatGPT



Deep learning oversimplified

90% dog
' 8 8 8 .' 5% cat
8 ‘8 \8 "\‘ 2% glasses
data x model f( - ) prediction labely
(with parameter w) f(x)

—— ——

Repeat for TONs of (x,y) + some tips/tricks/tuning
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Current DL practice

Usual formula:

1. one graduate student

one model “Alchemy”, largely trial & error

performance numbers on a few standard test sets

2.

3.

: yay.PvI\:eI.Drock. “ThiS iS Grad uate
one Ph.D. Student Descent”

https://www.slideshare.net/npinto/highperformance-computing-needs-machine-learning-and-vice-versa-nips-2011-big-learning



Current DL theory

e parameters: universal
approximation, ...

e random Initialization: NTK, ...

* |low training error: benign
overfitting, ...

o SGD: implicit bias, ...

blind men and an elephant e and many more

Would theory, from an incomplete picture, be useful?
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all sorts of applications

better theory, better trial & error

This talk

the incomplete theory



Part 1. Stepsize




gradient

(Stochastic) Gradient Descent ...

W, =w —- VZ(w)

making how much update? -
AKA., stepsize / learning rate” Cauchy, 1847

backpropagation adaptive linear neuron perceptron stochastic approximation

Werbos, 1974 Widow & Hoff, 1960




Optimization theory oversimplified

quadratic landscape

cwy)=2¢w—n-Viw))

2

— £(w) =1 - |VEW)||% A '72 VEW)T - V2E(w) - VE(w) — 00) n> 0.1

<tw)—n- (1 —g ° Hsz(W)Hz) IVEWIIZ = O@r)

n < 0.1

[descent lemma]

£(w) = 10w?

For small 77, £(w,) decreases monotonically, GD works
we—w-—n-20w

For large 1, GD does not work for quadratics



Numbers In DL (classification problem)
3-layer net + 1,000 samples from MNIST+ GD with const-stepsize
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iteration iteration

small stepsize works;
large stepsize also works and works better in the long run



Limitations of the old picture

DL classification (cross-entropy) opt theory (quadratic)
' —— n=0.01
101 -
?Om 100_E }7 > O.l
E 1071 \

n < 0.1

0 200 400 600 800 1000 £(w) = 10w?
iteration

old theory picture predicts green curve, but fails predicting red curve
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* the datasets can be perfectly fitted,

Then GD, with any constant stepsize,
minimizes the fitting error.

lopen/ongoing]

Benefits of large stepsize?

Wu, Jingfeng, Vladimir Braverman, and Jason D. Lee. "Implicit Bias of Gradient Descent for Logistic Regression at the Edge of
Stability." NeurlPS 2023



Rethinking optimization theory

* in DL (classification), Taylor approx. is limited (b/c its local)
e “valley” is more stable than “quadratic basin”

* descent lemma isn’t a golden rule (more likely a bad rule)




Part 2. Implicit Regularization



Statistical learning theory oversimplified

R(w) = ROw¥) =[ROw) = R, W)+ R, (w) = R, (w%) +

< Empirical + sup |R(w) — IA?,,(W)

WEH
1. Generalization: empirical fit vs. complexity control
1 is (always) a good advice, 2 is debatable of |

log| Z | |

weH I ol |

sup |[Rw) — R, (w)| S

2. #Param (uniformly) controls complexity complexity uncontrolled
=> overfitting

6



What controls complexity in DL?

1. hypothesis class size 85
4L 80-
@ 11'params >
C 75.-
2. explicit regularization :
£ 710- ---- SGD, small LR (81.84 + 0.25)
)
. : — ---- GD, small LR (81.61 = 0.29)
Welght deCay, drOPOUt, e 65 ; — SGD, moderate LR (82.47 £ 0.57)
—— GD, moderate LR (81.46 +£1.10)
3. Implicit regularization 00 2000 4000 6000 8000 10000

# lteration

o SGD, a simple learning rule |
NN with 11,330 parameters

fitting 2,000 samples from FashionMNIST

without explicit reqularization

Wu, Jingfeng, Difan Zou, Vladimir Braverman, and Quanquan Gu. "Direction Matters: On the Implicit Bias of Stochastic Gradient
Descent with Moderate Learning Rate." ICLR 2021



Linear / ReLU regression, revisited
minimize R(w) = [E(¢(XTW) — y)z, w e R
¢ = id ormax{ - ,0}
with n iid samples: (X, y), ..., (X,, y,)
Distributional assumption (simplified)
y=px'w) +40,1), [wl, <1, x~4(0,H)

SGD / Perceptron "

— T o
Wt T Wt—l — ;- (¢(Xt Wt—l) T yt) ) Xt? [ = 1,...,n 0%11;77

n/logn Steps



# params

Implicit Complexity Control o [ “““"’

SGD
complexity

ZWBGK’21, WZBGK’22, WZCBGK’23] g DIV

DIM DIM problem instance
Bias + —— S ER(w,) —minR < Bias + —

I

n n

complexity

DIM < d, afunction of n, , and H, controls the complexity

e Zou, Difan, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham Kakade. "Benign overfitting of constant-stepsize sgd for linear
regression." COLT 2021.

e Wu, Jingfeng, Difan Zou, Vladimir Braverman, Quanquan Gu, and Sham Kakade. "Last iterate risk bounds of sgd with decaying
stepsize for overparameterized linear regression." ICML 2022

e Wu, Jingfeng, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Sham M. Kakade. "Finite-Sample Analysis of Learning
High-Dimensional Single ReLU Neuron.” ICML 2023



Implicit complexity control

1
DIM = #{,{i > — % + nznz : 2 /112 (4;);>1 denote eigenvalues of H =
M A<
L > ny
hyperparameters

ratio

# params
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eigenvalue index

DIM is small when eigenvalues decay fast

SGD exploits a “low-dim” structure in data

- [ XX




Excess Risk = Bias + Noise * Dim / Steps

(4 + zi>k* /li)z

72
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1> k™

K = n/logn

1. ridge with large 4 <=> SGD with small 7 2. SGD has smaller bias in the head



Implicit vs. explicit regularization

IZWBGFK’21] Fix a set of “natural” least square problems (opt is not hard &
label is noisy).

Assume an oracle tunes both SGD and ridge to their best on each problem
instance. Let m and n be their sample complexity to attain the same rate.

» For every problem instance: m s n logz(n)

» There exist a problem instance: n > m2/10g4(m)

tuned SGD inflates at most poly-log more samples than tuned ridge
tuned ridge can inflate poly more samples than tuned SGD

tune SGD before tuning weight decay :)

Zou, Difan, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, Dean P. Foster, and Sham Kakade. "The benefits of implicit
regularization from sgd in least squares problems." NeurlPS 2021



Rethinking statistical learning theory

* In DL, complexity isn’t controlled by #params
o complexity is largely controlled by simple learning rules

» stepsize balances empirical fit and complexity control

# params
]
3| sGD
Q .
c |complexity /-
o, 8
N DIM

problem instance




Conclusions

optimization and statistical learning

theory are still insightful
but need revisions in deep learning
large stepsize, implicit regularization

more effective trial & error if things
are understood better

my website



