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The Implicit Regularization of SGD
 in Least Square Problems and Beyond



DL 101: How to train DNNs on CIFAR-10?
Bag of tricks


• Data augmentation


• Weight decaying


• Dropout


• Batch normalization


…


• SGD (LR decaying + early stopping)



Algorithms induce regularization

• “Unregularized”: 





• “Explicit” regularization: weight decaying / ridge 





• “Implicit” regularization: SGD


w ← arg min L(w)

w ← arg min L(w) + λ∥w∥2
2

w ← SGD(η; dataset)



SGD in Practice

Wu, Jingfeng, Wenqing Hu, Haoyi Xiong, Jun Huan, Vladimir Braverman, and Zhanxing Zhu. "On the noisy gradient descent that generalizes as sgd." In International Conference on Machine 
Learning, pp. 10367-10376. PMLR, 2020.

w ← w − η ⋅ ∇ℓ(xi, yi; w)

• Overparameterized model => Tons of ERM & some may not generalize


• SGD: small batch + large initial LR + LR decaying (early stopping)


• SGD solution generalizes well

Algo implicitly imposes regularization! 

But how?



Q: For a new problem, which trick to 
try/tune first? 

  
SGD or WD?



Understand SGD



Problem simplification
• # param 


• ReLU non-linearity


• Layer structure


…

> 107

Maybe… 


Start with modeling high-dim?

Head up: + ReLU shortly



A high-dim linear regression

•  dimensional regression


 ,    


• A small training set (iid),      





• Test error


d

y = x⊤w* + 𝒩(0,1), ∥w*∥2 ≤ 1 x ∼ 𝒩(0, H)

n < d

(x1, y1), …, (xn, yn)

Δ(w) := ∥w − w*∥2
H



Wait, is this even possible to solve?
In general, no

[Classical Result] 


When , any reasonable algorithm suffers H = Id Δ ≥
d
n

≥ Ω(1)

[Intuition] 


• probe each dim induces a unit uncertainty


•  important directions to probed



But why we can solve them in practice?

In practice,  only has a 
few large eigenvalues.


H

H ≪ I

Yang, Rubing, Jialin Mao, and Pratik Chaudhari. "Does the data induce capacity control in deep 
learning?." In International Conference on Machine Learning, pp. 25166-25197. PMLR, 2022.



Q: How SGD performs when 
?H ≪ I



Algorithm simplifaction

One-pass SGD (i.e., early stopping)



wt = wt−1 − ηt ⋅ (x⊤
t wt−1 − yt) ⋅ xt, t = 1,…, n

η
η

10 η
100



A Glance to Our Theory

𝚌𝚘𝚗𝚜𝚝𝟷
n

⋅ 𝙳𝙸𝙼 ≤ Δ ≤
𝚌𝚘𝚗𝚜𝚝𝟸

n
⋅ 𝙳𝙸𝙼

eigenvalues of H = 𝔼[xx⊤]

Δ ≤
𝚌𝚘𝚗𝚜𝚝

n
⋅ d

Classical result Our result

𝙳𝙸𝙼 := #{λi ≥
1
ηn } + η2n2 ∑

λi< 1
ηn

λ2
i

problem instance
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r

our prediction

classical prediction
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worst case

• Zou, Difan, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham Kakade. "Benign 
overfitting of constant-stepsize sgd for linear regression." In Conference on Learning 
Theory, pp. 4633-4635. PMLR, 2021. 

• Wu, Jingfeng, Difan Zou, Vladimir Braverman, Quanquan Gu, and Sham M. Kakade. "Last 
Iterate Risk Bounds of SGD with Decaying Stepsize for Overparameterized Linear 
Regression." International Conference on Machine Learning, 2022.



SGD can solve well-structured 
high-dim problems



SGD or WD?



• Ridge regularization (WD)





• One-pass SGD (i.e., early stopping)


w = arg min
n

∑
t=1

∥x⊤
n w − yn∥2

2 + λ ⋅ ∥w∥2
2

wt = wt−1 − ηt ⋅ (x⊤
t wt−1 − yt) ⋅ xt, t = 1,…, N

SGD vs. WD

η
η

10 η
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problem instance
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SGD

Ridge regression • For each problem in set:


         


• There is a problem in the set:


                                   

m ≲ n log2(n)

n ≥ m2/log4(m)

Ridge could be bad ☹ 

SGD is alway nearly good 🙂

Tune both SGD and ridge to their best. 


Let  and  be their sample complexitym n
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SGD vs. WD

• Tsigler, Alexander, and Peter L. Bartlett. "Benign overfitting in ridge regression." arXiv preprint arXiv:2009.14286 (2020). 
• Zou, Difan, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, Dean P. Foster, and Sham Kakade. "The benefits of implicit regularization from sgd in least squares problems." Advances in Neural 

Information Processing Systems 34 (2021): 5456-5468.



Tuning SGD is probably more 
worthy than tuning WD



Beyond Linearity



A high-dim ReLU regression

• Non-convex -> very hard


• SGD no longer a good idea


• But, can fix it!

y = 𝚁𝚎𝙻𝚄(x⊤w*) + 𝒩(0,1)



A loss landscape example

• Non-convex


• SGD, initialized from left, will stuck


• Exact-gradient based updates may 
not be good



ML101: Perceptron
L(w) = ∑

(x,y)
(𝚁𝚎𝙻𝚄(x⊤w*) − y)2

• SGD





• Perceptron (iteratively error correction)


wt = wt−1 − ηt ⋅ (𝚁𝚎𝙻𝚄(x⊤
t wt−1) − yt) ⋅ xt ⋅ 1[x⊤

t wt−1>0]

wt = wt−1 − ηt ⋅ (𝚁𝚎𝙻𝚄(x⊤
t wt−1) − yt) ⋅ xt



Perceptron solves ReLU regression

𝚌𝚘𝚗𝚜𝚝𝟷
n

⋅ 𝙳𝙸𝙼 ≤ Δ ≤
𝚌𝚘𝚗𝚜𝚝𝟸

n
⋅ 𝙳𝙸𝙼

eigenvalues of H = 𝔼[xx⊤]

𝙳𝙸𝙼 := #{λi ≥
1
ηn } + η2n2 ∑

λi< 1
ηn

λ2
i

problem instance

er
ro

r

perceptron

SGD

practice practice 2
Open Question:  

How to extend perceptron to DL?



ML Application

ML Theory

Experiments Algorithms

Better theory 

• High-dim


• Non-convex


• Average cases


…

Better practice 

• Algo. choice


• SGD > WD


• Algo. design


• Explore structure


• Adjust gradient?


…



Take Home & Acknowledgement

Quanquan Gu Difan ZouSham M. KakadeDean P. FosterVova Bravermen

• Algorithmic regularization 
• SGD > WD 
• ReLU: perceptron > SGD


