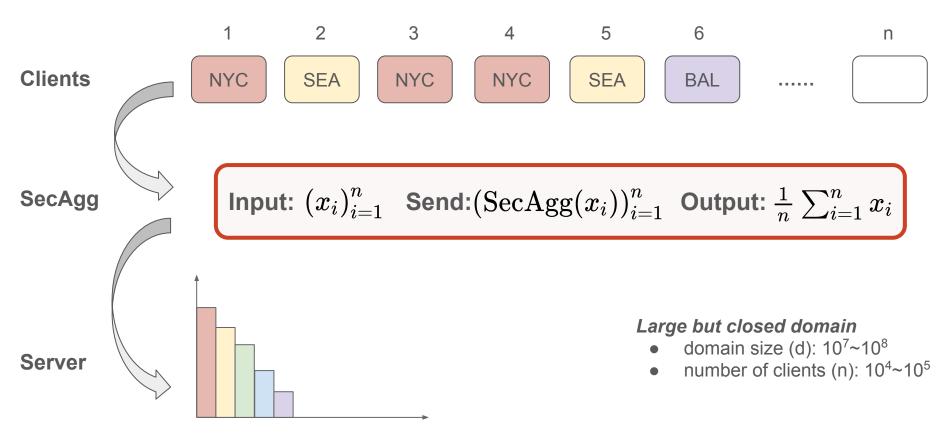
Private Federated Frequency Estimation: Adapting to the Hardness of the Instance (NeurIPS 2023)

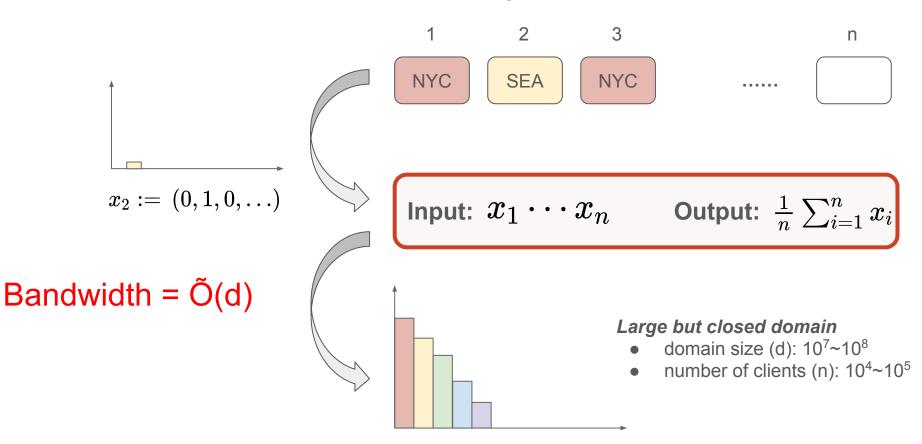
Jingfeng Wu

with Wennan Zhu, Peter Kairouz, and Vova Braverman

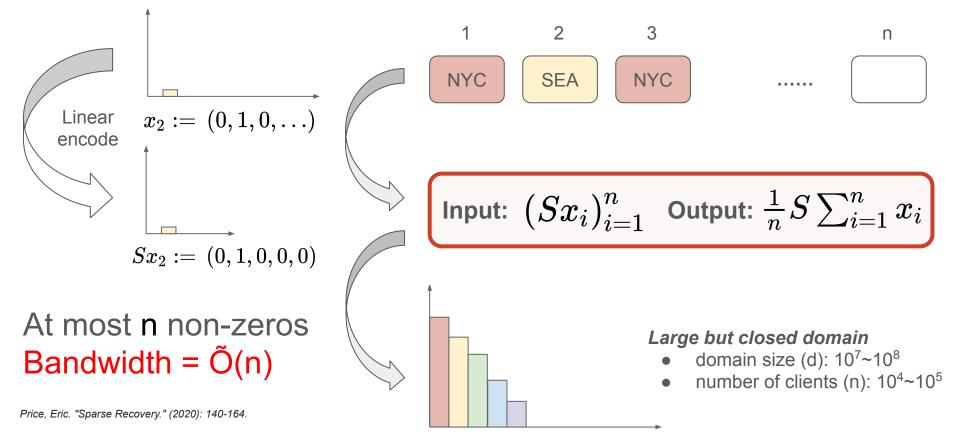
Secure Frequency Estimation



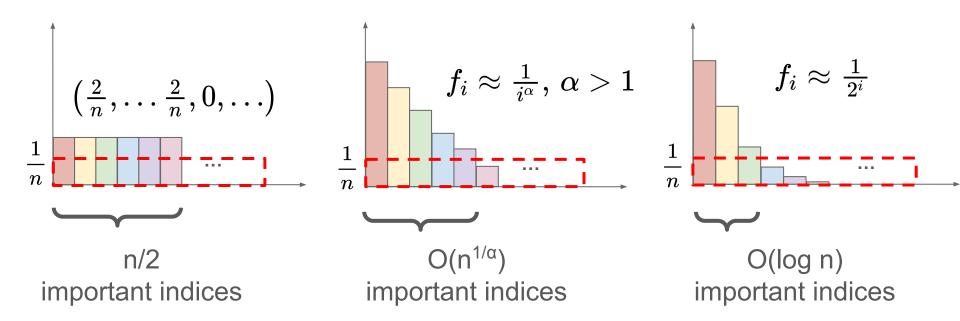
Naive approach: one-hot encoding



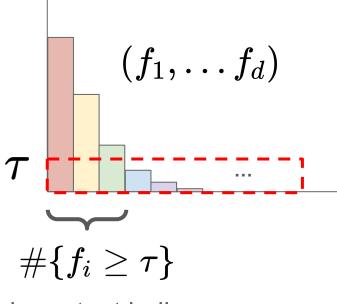
Save bandwidth with sparse encoding



Save more bandwidth?



If an oracle tells you the set of important indices

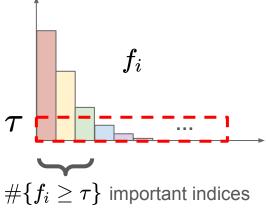


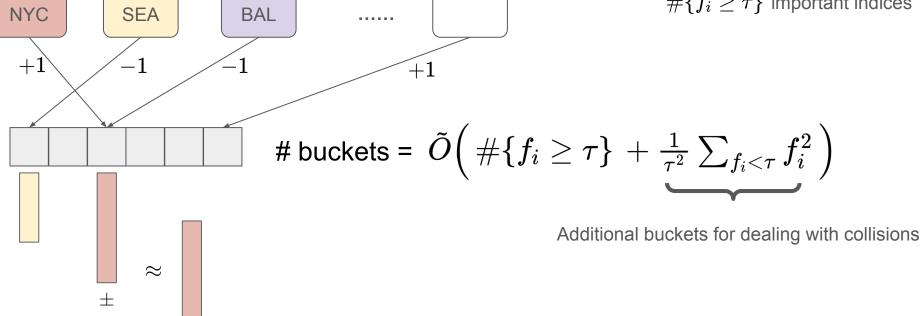
important indices

- Error parameter τ (e.g., $\tau = 1/n$)
- Only counts over a small domain
- Bandwidth $ilde{O}(\,\#\{f_i\geq au\}\,)$
- This is minimum!

Without knowing the important indices, <u>Count-Sketch</u>:

randomly assign the d counters to a few buckets





Estimate the bandwidth
$$ilde{O}\Big(\,\#\{f_i \geq au\}\,+rac{1}{ au^2}\sum_{f_i < au} f_i^2\,\Big)$$

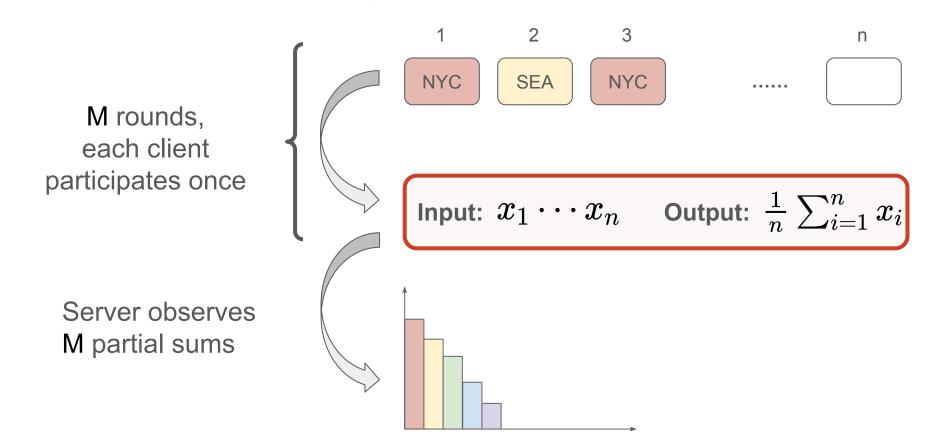
- 1. Assume that $f_i pprox eta \cdot i^{-lpha} \Leftrightarrow \log f_i pprox \log eta lpha \cdot \log i$
- 2. **P1**. Small sketch collecting a few top counts $(1, \hat{f}_1), \ldots, (20, \hat{f}_{20})$
- 3. Estimate $log(\beta)$ and α by linear regression

$$\mathsf{4.} \quad \#\{f_i > \tau\} \,+\, \frac{1}{\tau^2} \sum_{f_i < \tau} f_i^2 \approx \left(\frac{\beta}{\tau}\right)^{\frac{1}{\alpha}} + \frac{\beta^2}{(2\alpha-1)\tau^2} \cdot \left(\frac{\beta}{\tau}\right)^{\frac{1-2\alpha}{\alpha}}$$

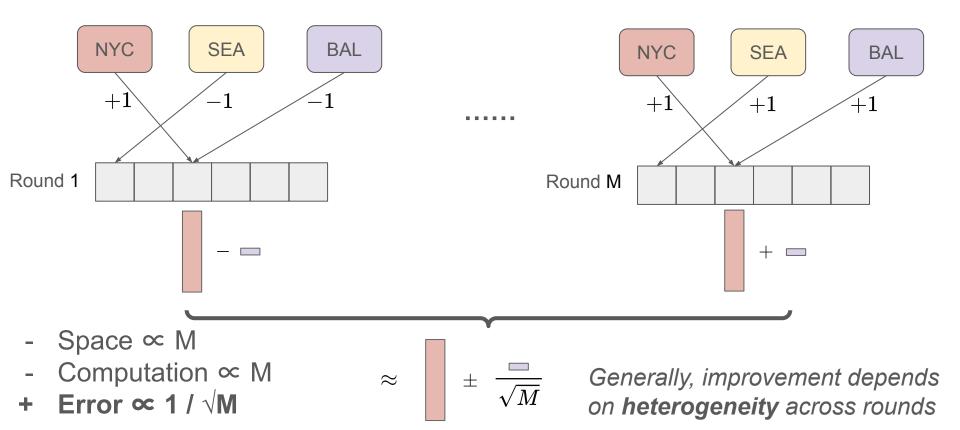
5. P2. Set the bandwidth & run

Cevher V. Learning with compressible priors. Advances in Neural Information Processing Systems. 2009;22.

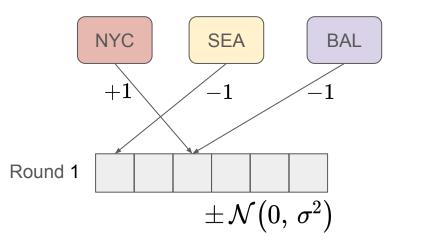
Real-world FA: from single round to multiple rounds



Hybrid sketches: shared bucket hash + fresh sign hash

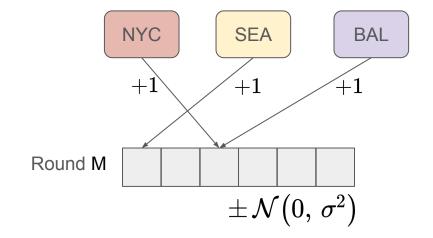


Multi-round: DP for hybrid sketches



 $\sigma \propto I_2$ -sensitivity \propto

- 1 / #{clients per round}
- \/#{independent sketches per round}



Release M sketches