Private Federated Frequency Estimation: Adapting to the Hardness of the Instance

Jingfeng Wu¹, Wennan Zhu², Peter Kairouz², Vladimir Braverman³

¹JHU => UC Berkeley (work done at Google), ²Google Research, ³Rice University and Google

Q. Secure frequency estimation with small communication?

Q1. How large should S be?

A1. Easier problems require smaller S

Q2. What S to use? A2. Count-sketch

buckets is $ilde{O}\Big(rac{\#\{f_i\geq au\}}{ au}+rac{1}{ au^2}\sum_{f_i< au}f_i^2\Big)$

C4 (Colossal Clean Crawled Corpus) dataset experiments

SEA

- d = 150,868 $n = 15,000 \approx d/10$ sketch length = 5
- constant factor in Õ(⋅) is set to be 2
- minimax optimal: sketch width w.r.t. the minimax-optimal bound instance optimal: sketch width w.r.t. the instance-specific bound

Q3. How to select S in practice?

- A3. A two-phase method:
 - 1.approximate # buckets
 - 2.use sketch with approximated # buckets

C4 dataset experiments

In phase 1, we model the freq. with a poly. We use n/10 data and a sketch of size 8x200 to estimate the top-20 index of the poly.

Q4. FA with multi-rounds? That is, server sees M partial sums instead of only 1.

- A4. Count-sketch with hybrid design:
 - 1.shared bucket hashes + fresh sign hashes
 - 2.best of shared design and fresh design

Q5. (Central) differential privacy?

A5. Add proper noise to sketched matrices.

