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Implicit Bias of Gradient Descent
 for Logistic Regression at the Edge of Stability



What happens in OPT for DL

4-layer fully connected net


1,000 samples from MNIST


gradient descent (GD)

Risk oscillation caused by large stepsize



Good hyperparameter is often large

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y. and He, K., 2017. Accurate, large minibatch sgd: 
Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677.



Edge of stability (EoS)    η > 2 / ∥∇2L(w)∥2

Cohen, J. M., Kaur, S., Li, Y., Kolter, J. Z., & Talwalkar, A. (2021). Gradient descent on neural networks typically occurs at the 
edge of stability. arXiv preprint arXiv:2103.00065.



Risks converge while oscillating 


by chance or by math?



Remove “distractions”
10 classes -> 2 classes ( y = “0” or “8” )               NN -> linear model (w/o bias)

Logistic regression on “linearly separable” data



A even more minimal example

Logistic regression on four 2D samples



Problem setup
Logistic regression on separable data

• Samples 


• Risk





• Constant-stepsize GD


(xi, yi = 1)n
i=1

L(w) := ∑
i

log(1 + exp( − ⟨w, xi⟩))

wt = wt−1 − η ⋅ ∇L(wt−1)

Assumption 1: ∃w, ⟨w, xi⟩ > 0, i = 1,…, n



What we know so far
Logistic regression on separable data
If the stepsize is small (e.g., )


• Risk minimization





• Margin maximization


η = 0.01

L(wt) ≤ 𝒪̃( 1
t )

wt

∥wt∥2
−

ŵ
∥ŵ∥2

≤ 𝒪̃( 1
log(t) )

by descent lemma

SVM solution


, s.t. ŵ = arg min ∥w∥2 ∀i, ⟨w, xi⟩ ≥ 1

• Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., & Srebro, N. (2018). The implicit bias of gradient descent on separable data. The 
Journal of Machine Learning Research, 19(1), 2822-2878.


• Ji, Z., & Telgarsky, M. (2018). Risk and parameter convergence of logistic regression. arXiv preprint arXiv:1803.07300.



A gap between theory and practice
Small stepsize ✅ 


guaranteed risk minimization, 

margin maximization, 


…

Large stepsize works well


trust me bro!

tried 3 different seeds



Our Results
(any) const-stepsize


+

logistic regression


+

separable data



Space decomposition

Max-margin  
subspace 

𝒫

Non-separable  
subspace 

𝒫
Dual form: ŵ = α1 ⋅ x1 + … + αs ⋅ xs

0 = α1 ⋅ ⟨v, x1⟩ + … + αs ⋅ ⟨v, xs⟩

Orthogonal: 0 = ⟨v, ŵ⟩

Assumption 3:  for supp. vectorsαi > 0

Then there must exist , ⟨v, xi⟩ > 0 ⟨v, xj⟩ < 0

Assumption 2: supp. vectors span the space



Implicit Bias
For every constant stepsize :


A. In the max-margin subspace,





B. In the non-separable subspace,





C. In the non-separable subspace,


,    where 

η > 0

𝒫 ∘ wt ≥
1
γ

⋅ log(t) + Θ(1)

𝒫 ∘ wt 2
≤ Θ(1)

G(𝒫 ∘ wt) − min G( ⋅ ) ≤
Θ(1)
log(t)

G(v) := ∑
x∈𝚜𝚞𝚙𝚙.

exp( − ⟨𝒫 ∘ x, v⟩)
strongly convex



Risk minimization
For every constant stepsize :


D. Risk is bounded by


η > 0

L(wt) ≤
Θ(1)

t

theory based!  

large stepsize => risk still converges  

possibly non-monotonically



Feel free to use large stepsizes?



GD can diverge under exp loss
Consider exp loss on two 2D samples


   <=>   


Assume that 


,  ,  ,  .


Then


A. 


B.  and  flips sign every iteration 


C.  

L(w) = ∑i e−⟨w, xi⟩ L(v, v̄) = e−γv−v̄ + e−γv+v̄

0 ≤ v0 ≤ 2 | v̄0 | ≥ 1 0 < γ < 1/4 η ≥ 4

vt → ∞

| v̄t | > 2γvt v̄t

L(vt, v̄t) → ∞

Max-margin 
subspace

Non-separable 
subspace

γ

1

−1

x1 = (γ, 1)

x2 = (γ, − 1)

EoS  small-stepsize 

logistic loss  exp loss

≠

>



Feel free to use large stepsizes


under logistic loss!



Techniques Overview



A new approach for handling EoS
Existing approaches


1. Show risk convergence


(by descent lemma)


2. Show iterate limiting behaviors

Our approach


1. Study iterate limiting behaviors


2. Show risk convergence


(by iterate limits)

• Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., & Srebro, N. (2018). The implicit bias of gradient descent on separable data. The 
Journal of Machine Learning Research, 19(1), 2822-2878.


• Ji, Z., & Telgarsky, M. (2018). Risk and parameter convergence of logistic regression. arXiv preprint arXiv:1803.07300.

descent lemma is broken in EoS



Work out the two samples

L(v, v̄) = log(1 + e−γv−v̄) + log(1 + e−γv+v̄)

vt+1 = vt − η ⋅ gt v̄t+1 = v̄t − η ⋅ ḡt

gt := − γ ⋅ ( 1
1 + eγvt+v̄t

+
1

1 + eγvt−v̄t ) ḡt := − ( 1
1 + eγvt+v̄t

−
1

1 + eγvt−v̄t )
For simplicity, assume , .v0 = 0 | v̄0 | > 0

Max-margin 
subspace

Non-separable 
subspace

γ

1

−1

x1 = (γ, 1)

x2 = (γ, − 1)



Step 1:  are uniformly bounded(v̄t)t≥0

| v̄t+1 | = | | v̄t | − η ⋅ | ḡt | |
≤ max{ | v̄t | , η ⋅ | ḡt |}
≤ max{ | v̄t | , η}
≤ …
≤ max{ | v̄0 | , η}

Step 2: , so gt ≈ − γ ⋅ e−γvt ⋅ Θ(1) vt ≈ log(t)/γ

Step 3: , so  

, where 

ḡt ≈ e−γvt ⋅ ∇G(v̄t)
v̄t+1 ≈ v̄t − ηt ⋅ ∇G(v̄t) ηt = η ⋅ e−γvt ≈ Θ(1)/t

 and  share the same signv̄t ḡt

 is boundedḡt

induction

ḡt := − ( 1
1 + eγvt+v̄t

−
1

1 + eγvt−v̄t )

=> margin gets max-ed



Step 4: a modified descent lemma

G(v̄t+1) ≤ G(v̄t) + ⟨∇G(v̄t), v̄t+1 − v̄t⟩ +
β
2

⋅ ∥v̄t+1 − v̄t∥2
2

≈ G(v̄t) − ηt ⋅ ∥∇G(v̄t)∥2
2 +

β
2

⋅ η2
t ⋅ ∥∇G(v̄t)∥2

2 (+higher orders)

≤ G(v̄t) + Θ(1) ⋅ η2
t ⋅ ∥∇G(v̄t)∥2

2

≤ G(v̄t) +
1
t2

⋅ Θ(1)

So for , T ≥ t ≥ 1 G(v̄T) ≤ G(v̄t) +
1
t

⋅ Θ(1)

The “increase” of risk must decrease

For small-stepsize,  G(v̄T) < G(v̄t)



Step 5: convergence of v̄t

∥v̄t+1 − v̄*∥2
2 = ∥v̄t − v̄*∥2

2 + 2 ⋅ ⟨v̄t − v̄*, v̄t+1 − v̄t⟩ + ∥v̄t+1 − v̄t∥2
2

≈ ∥v̄t − v̄*∥2
2 − 2ηt ⋅ ⟨v̄t − v̄*, ∇G(v̄t)⟩ + η2

t ⋅ ∥∇G(v̄t)∥2
2

≤ ∥v̄t − v̄*∥2
2 − 2ηt ⋅ (G(v̄t) − G(v̄*)) +

1
t2

⋅ Θ(1)

T

∑
t=t0

ηt ⋅ (G(v̄t) − G(v̄*)) ≤ Θ(1) +
T

∑
t=t0

1
t2

⋅ Θ(1) ≤ Θ(1)

G(v̄T) − G(v̄*) ≤
∑T

t=t0
ηt ⋅ (G(v̄t) − G(v̄*)) + ∑T

t=t0
ηt ⋅ Θ(1)

t

∑T
t=t0

ηt

≤
Θ(1)

∑T
t=t0

1
t

≈
Θ(1)

log(T)



Take away
• Convergence/implicit bias theory still holds in the EoS regime


• However, only for logistic loss not for exponential loss


• New analysis ideas

What’s next?
• What happens in poly time?


• Population risk?


• Non-linear model? Other Algos?…


