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• For small ,  decreases 
monotonically, GD works 


• For large , GD does not work for 
quadratics
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For every constant stepsize :


A. in the max-margin subspace,





B. in the non-separable subspace,





C. moreover,


, where 


D. risk is bounded by
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G(v) := ∑
x∈𝚜𝚞𝚙𝚙.

exp( − ⟨𝒫 ∘ x, v⟩)
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How to choose stepsize / learning rate?

• binary classification data 


• logistic loss + linear model





• constant-stepsize GD





• Assumption 1. 

(xi, yi = 1)n
i=1

L(w) := ∑
i

log(1 + exp( − ⟨w, xi⟩))

wt = wt−1 − η ⋅ ∇L(wt−1)

∃w, ⟨w, xi⟩ > 0, i = 1,…, n

Dual form: ŵ = α1 ⋅ x1 + … + αs ⋅ xs

0 = α1 ⋅ ⟨v, x1⟩ + … + αs ⋅ ⟨v, xs⟩

Orthogonal: 0 = ⟨v, ŵ⟩

Assumption 2.  for supp. vectorsαi > 0

Lemma. There must exist , ⟨v, xi⟩ > 0 ⟨v, xj⟩ < 0

Assumption 3. supp. vectors span the space

Consider exp loss on two 2D samples


   <=>   


If ,  ,  ,  , then


A. 


B.  and  flips sign every iteration 


C.  

L(w) = ∑i e−⟨w, xi⟩ L(v, v̄) = e−γv−v̄ + e−γv+v̄

0 ≤ v0 ≤ 2 | v̄0 | ≥ 1 0 < γ < 1/4 η ≥ 4

vt → ∞

| v̄t | > 2γvt v̄t

L(vt, v̄t) → ∞

loss landscape

3-layer net + 1,000 samples from MNIST+ GD with const-stepsize

logistic regression on 1,000 samples of “0” and “8” from MNIST

Descent Lemma

Edge of Stability

small stepsize works; large stepsize also works

non-monotonicity against descent lemma Negative Results for Exp Loss

Convergence at EoS

Conclusion & References

Simulation

• convergence of GD with large stepsize 

• “valley” instead of “quadratic basin” 

• benefits of logisitic loss 
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x1 = (γ, 1)

x2 = (γ, − 1)
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