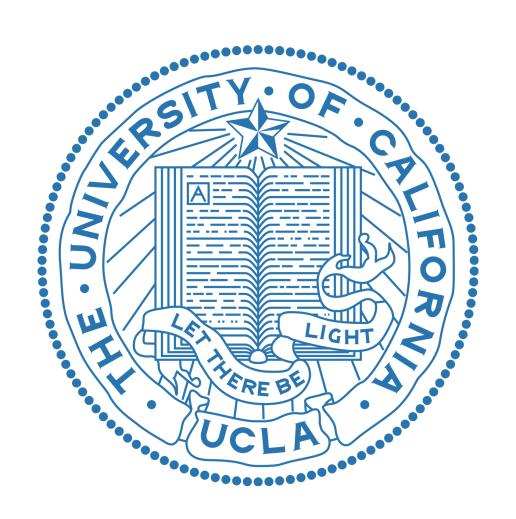
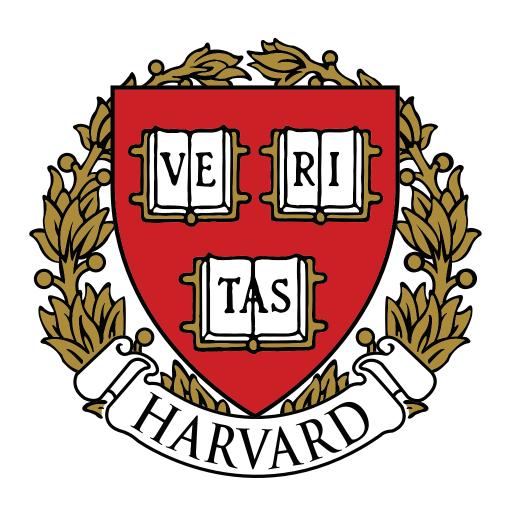
Last Iterate Risk Bounds of SGD with Decaying Stepsize for Overparameterized Linear Regression

Jingfeng Wu with Difan Zou, Vladimir Braverman, Quanquan Gu, Sham M. Kakade

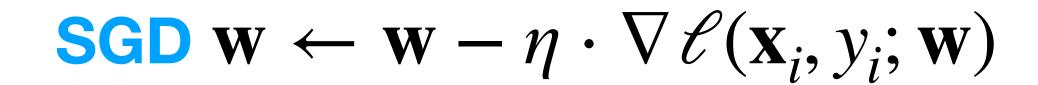


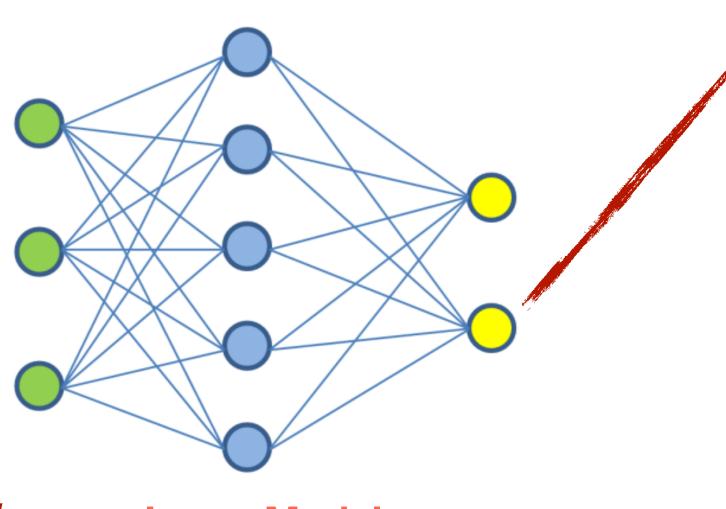


The Implicit Regularization Effect of SGD

Population Risk

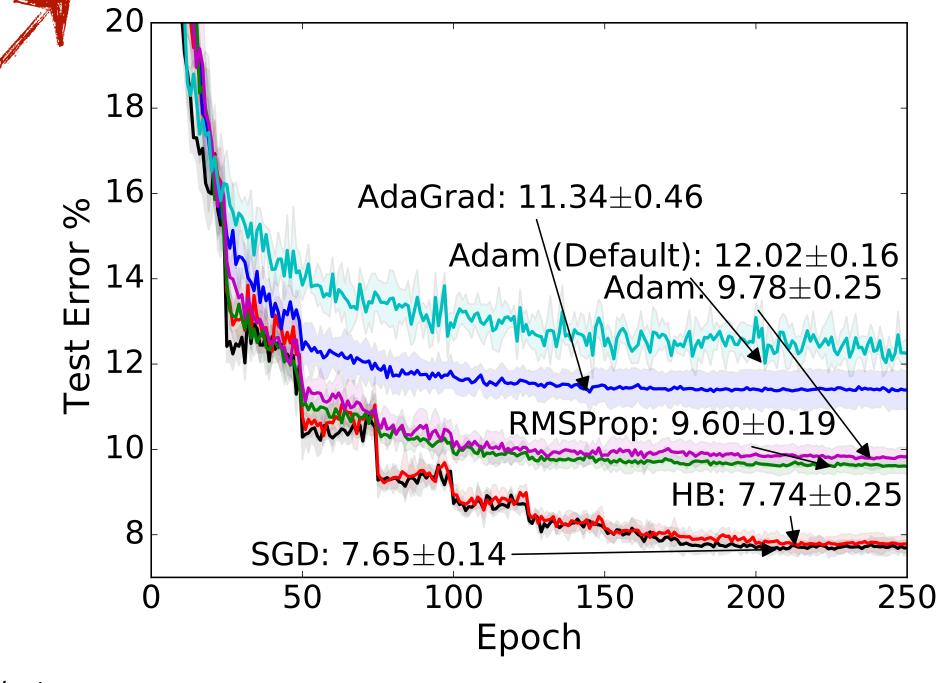
$$\mathcal{L}(\mathbf{w}) = \mathbb{E}\ell(\mathbf{x}, y; \mathbf{w})$$





SGD generalizes well for learning high-dim model

Large Model
$$\mathbf{w} \in \mathbb{R}^d$$
 for large d



SGD generalizes well

High Dimensional Linear Regression

True Model
$$y = \mathbf{x}^\mathsf{T} \mathbf{w}^* + \mathcal{N}(0, \sigma^2)$$

Data Covariance
$$\mathbf{H} := \mathbb{E}[\mathbf{x}\mathbf{x}^{\mathsf{T}}] =: \mathrm{diag}(\lambda_1, \lambda_2, \ldots)$$
, WOLG

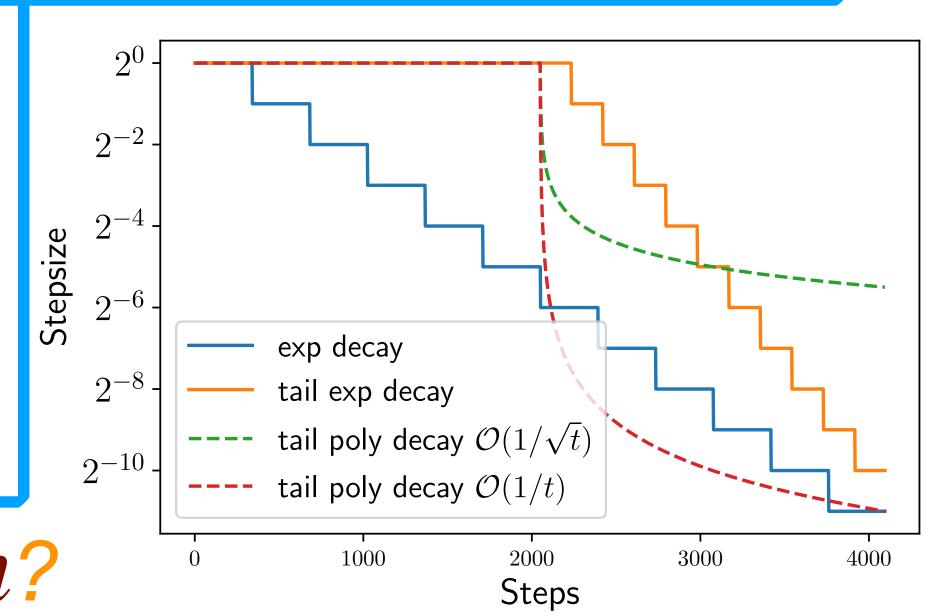
Population Risk
$$\mathcal{L}(\mathbf{w}) := \mathbb{E}(\mathbf{y} - \mathbf{x}^\mathsf{T}\mathbf{w})^2$$

Excess Risk
$$\Delta(\mathbf{w}) := \mathcal{L}(\mathbf{w}) - \mathcal{L}(\mathbf{w}^*) = (\mathbf{w} - \mathbf{w}^*)^\mathsf{T} \mathbf{H}(\mathbf{w} - \mathbf{w}^*)$$

SGD with *n* samples, $(\mathbf{x}_1, y_1) \cdots, (\mathbf{x}_n, y_n) \in \mathbb{R}^{d \times 1}$

$$\mathbf{w}_{t} = \mathbf{w}_{t-1} + \eta_{t} \cdot (y_{t} - \mathbf{x}_{t}^{\mathsf{T}} \mathbf{w}_{t-1}) \cdot \mathbf{x}_{t}$$

$$\mathsf{output} := \mathbf{w}_{n}$$

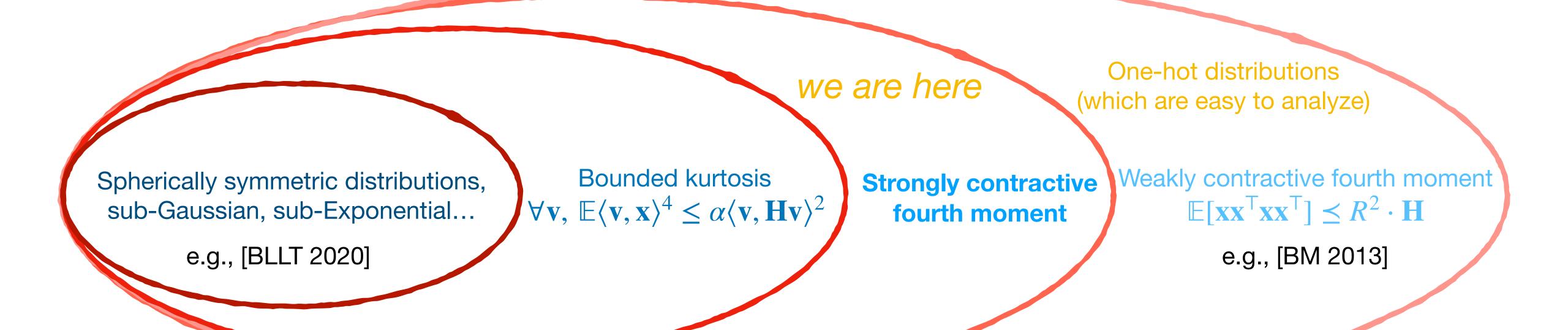


Two regimes: $d \leq n$? Caveat: One-Pass SGD

Key Assumption: Strongly Contractive Fourth Moment

Recall that $\mathbf{H} = \mathbb{E}[\mathbf{x}\mathbf{x}^{\mathsf{T}}]$. Assume that for every PSD matrix \mathbf{A} ,

- $\mathbb{E}[\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}\cdot\mathbf{x}\mathbf{x}^{\mathsf{T}}] \leq \alpha \cdot \text{tr}(\mathbf{H}\mathbf{A}) \cdot \mathbf{H}$ for some constant $\alpha \geq 1$;
- $\mathbb{E}[\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}\cdot\mathbf{x}\mathbf{x}^{\mathsf{T}}] \geq \beta \cdot \text{tr}(\mathbf{H}\mathbf{A}) \cdot \mathbf{H} + \mathbf{H}\mathbf{A}\mathbf{H}$ for some constant $\beta > 0$.



- Bach, Francis, and Eric Moulines. "Non-strongly-convex smooth stochastic approximation with convergence rate O (1/n)." Advances in neural information processing systems 26 (2013).
- Bartlett, Peter L., Philip M. Long, Gábor Lugosi, and Alexander Tsigler. "Benign overfitting in linear regression." Proceedings of the National Academy of Sciences 117, no. 48 (2020): 30063-30070.

Tail Geometrically Decaying Stepsizes

$$\mathbf{w}_t = \mathbf{w}_{t-1} + \boldsymbol{\eta}_t \cdot (\mathbf{y}_t - \mathbf{x}_t^\mathsf{T} \mathbf{w}_{t-1}) \cdot \mathbf{x}_t \quad \text{output} := \mathbf{w}_n$$

$$\eta_t = \begin{cases} \eta_0, & t \leq s \\ 0.5\eta_{t-1}, & t > s, t \% K = 0 \\ \eta_{t-1}, & \text{otherwise} \end{cases} \begin{bmatrix} \text{GKKN 2019} \\ \mathbb{E}\Delta(\mathbf{w}_n) \lesssim \left(\frac{d\|\mathbf{w}_0 - \mathbf{w}^*\|_2^2}{\eta_0 n} + \frac{d}{n} \cdot \sigma^2\right) \cdot \log n \end{cases}$$

$$\mathbb{E}\Delta(\mathbf{w}_n) \lesssim \left(\frac{d\|\mathbf{w}_0 - \mathbf{w}^*\|_2^2}{\eta_0 n} + \frac{d}{n} \cdot \sigma^2\right) \cdot \log r$$

Useful in practice!

what if d > n?

Remarks

- 1. Weakly contractive fourth moment
- 2. Variance bound scales with d
- 3. ℓ_2 -norm or condition number implicitly depends on d

A Fine-Grained Upper Bound

Let the stepsize decaying interval be $K := (n - s)/\log(n - s)$. For every s > 0, K > 2 and every $\eta_0 < 1/(4\alpha \operatorname{tr}(\mathbf{H})\log(n))$, we have exponentially decaying $\mathbb{E}\Delta(\mathbf{w}_n) \lesssim \frac{\|(\mathbf{I} - \eta_0 \mathbf{H})^{s+K}(\mathbf{w}_0 - \mathbf{w}^*)\|_{\mathbf{I}_{0:k^*}}^2}{\|\mathbf{I} - \eta_0 \mathbf{H}\|_{\mathbf{I}_{0:k^*}}^2} + \|(\mathbf{I} - \eta_0 \mathbf{H})^{s+K}(\mathbf{w}_0 - \mathbf{w}^*)\|_{\mathbf{H}_{k^*:\infty}}^2$ $\underbrace{k^* + \eta_0 K \sum_{k^* < i \le k^{\dagger}} \lambda_i + \eta_0^2 K^2 \sum_{i > k^{\dagger}} \lambda_i^2}_{i > k^{\dagger}} \cdot \left(\sigma^2 + \alpha \cdot \|\mathbf{w}_0 - \mathbf{w}^*\|_{\mathbf{H}}^2 \cdot \log(n)\right)$ effective dimension Here k^*, k^{\dagger} are such that $\lambda_1 \geq \ldots \geq \lambda_{k^*} \geq \frac{1}{n_0 K} \geq \lambda_{k^*+1} \geq \ldots \geq \lambda_{k^{\dagger}} \geq \frac{1}{n_0 (s+K)} \geq \lambda_{k^{\dagger}+1} \geq \ldots$

Ambient Dimension d vs.

$$\mathbf{I}_{0:k^*} := \text{diag}(1,...,1,0,0,...) \quad \mathbf{H}_{k^*:\infty} := \text{diag}(0,...,0,\lambda_{k^*+1},\lambda_{k^*+2},...)$$

Effective Dimension
$$k^* + \eta_0 K \sum_{k^* < i \le k^\dagger} \lambda_i + \eta_0^2 K^2 \sum_{i > k^\dagger} \lambda_i^2$$
, small when $(\lambda_i)_{i \ge 1}$ decays fast

A Nearly Matching Lower Bound

Let the stepsize decaying interval be
$$K:=(n-s)/\log(n-s)$$
. For every $s\geq 0$, $K>10$ and every $\eta_0<1/\lambda_1$, we have
$$\mathbb{E}\Delta(\mathbf{W}_n)\gtrsim \|(\mathbf{I}-\eta_0\mathbf{H})^{s+2K}(\mathbf{W}_0-\mathbf{W}^*)\|_{\mathbf{H}}^2+\\ \frac{k^*+\eta_0K\sum_{k^*< i\leq k^\dagger}\lambda_i+\eta_0^2K^2\sum_{i>k^*}\lambda_i^2}{K}\cdot\left(\sigma^2+\beta\cdot\|\mathbf{W}_0-\mathbf{W}^*\|_{\mathbf{H}_{k^*:\infty}}^2\right)$$
 effective dimension K . Here k^*,k^\dagger are such that $\lambda_1\geq\ldots\geq\lambda_{k^*}\geq\frac{1}{\eta_0K}\geq\lambda_{k^*+1}\geq\ldots\geq\lambda_{k^*}\geq\frac{1}{\eta_0(s+K)}\geq\lambda_{k^*+1}\geq\ldots$

Lower bound nearly matches upper bound if SNR is bounded, $\|\mathbf{w}_0 - \mathbf{w}^*\|_{\mathbf{H}}^2 \lesssim \sigma^2$

$$\begin{split} \mathbf{I}_{0:k^*} &:= \text{diag}(1, \dots, 1, 0, 0, \dots) \\ \mathbf{H}_{k^*:\infty} &:= \text{diag}(0, \dots, 0, \lambda_{k^*+1}, \lambda_{k^*+2}, \dots) \end{split}$$

Geometrically vs. Polynomially Decaying Stepsize

$$\eta_t = \begin{cases} \eta_0, & t \leq s \\ 0.5\eta_{t-1}, & t > s, t \% K = 0 \\ \eta_{t-1}, & \text{otherwise} \end{cases}$$

$$\eta_t = \begin{cases} \eta_0, & t \le s \\ \frac{\eta_0}{(t-s)^a}, & t > s \end{cases} \text{ for } 0 \le a \le 1$$

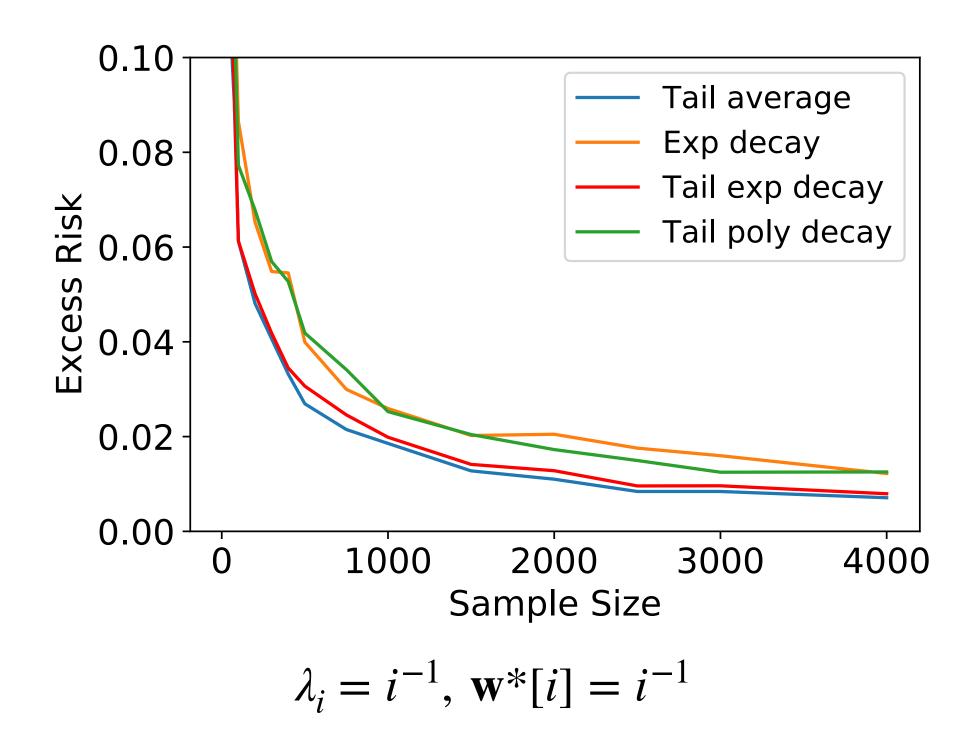
Let $\mathbf{w}_n^{\text{exp}}$ and $\mathbf{w}_n^{\text{poly}}$ be the SGD outputs with geometrically and polynomially decaying stepsizes, respectively. Fix same s=n/2, same \mathbf{w}_0 , same η_0 . Then we have

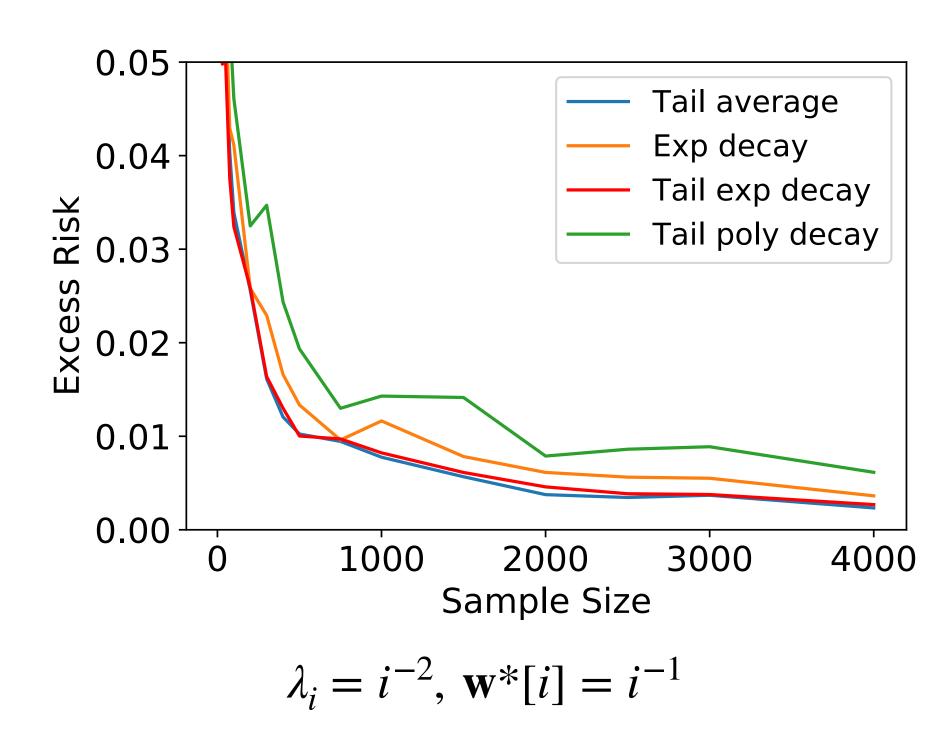
$$\mathbb{E}\Delta(\mathbf{w}_{\mathbf{n}}^{\text{exp}}) \lesssim (1 + \text{SNR} \cdot \log n) \cdot \mathbb{E}\Delta(\mathbf{w}_{\mathbf{n}}^{\text{poly}})$$

where SNR := $\|\mathbf{w}_0 - \mathbf{w}_n\|_{\mathbf{H}}^2 / \sigma^2$.

For **every** least square problem with bounded SNR, $\mathbf{w}_n^{\text{exp}}$ is always nearly no worse than $\mathbf{w}_n^{\text{poly}}$

Numerical Simulation





Experimental Setting: $\sigma^2 = 1$, d = 256, $\mathbf{w}_0 = 0$, s = n/2, a = 1Under each sample size, the initial stepsize is fine-tuned for each algorithm

- SGD can generalize in high-dim least squares
- Geometrically decaying stepsizes > polynomially decaying stepsizes

Conclusion

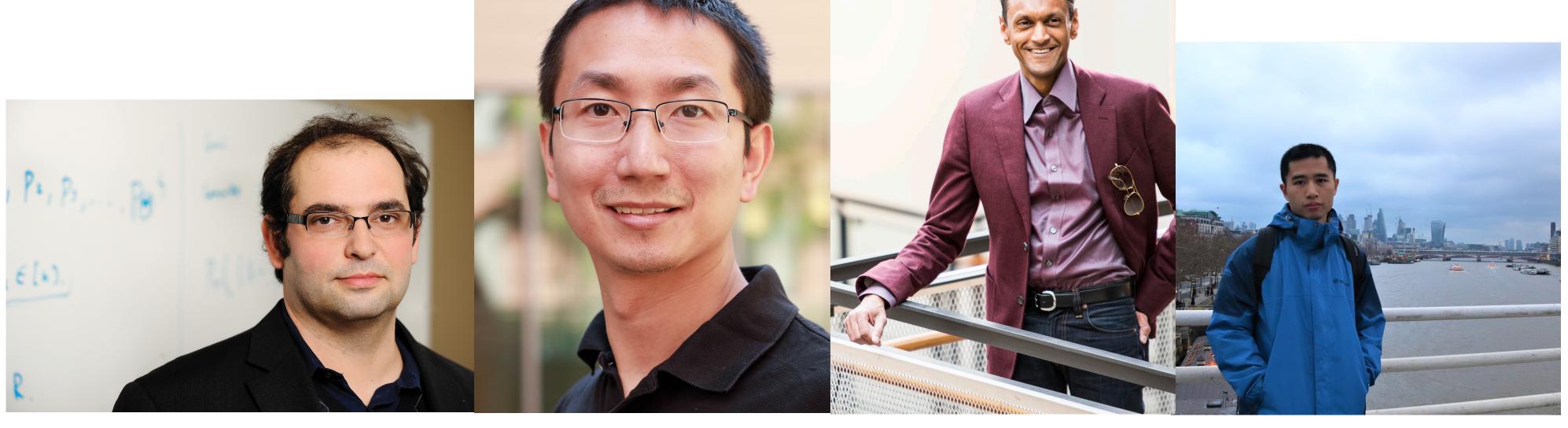
Take Home

- Risk of SGD in high-dim $\approx d_{\rm eff}$ / n
- $d_{\rm eff}$ determined by $(\lambda_i)_{i\geq 1}$, η_0 , $n_{\rm eff}$; and $\ll d$ when $(\lambda_i)_{i\geq 1}$ decay fast

Geometrical stepsize > polynomially stepsize

Limitations

- One-pass SGD
- Linear model
- Strongly contractive fourth moment



Vladimir Bravermen @ JHU

Quanquan Gu @ UCLA

Sham M. Kakade @ Harvard

Difan Zou @ UCLA

Get the Paper!