Unsupervised Reinforcement Learning Theoretical Guarantees in the Hard and Easy Cases

Jingfeng Wu, Vladimir Braverman, Lin F. Yang

Supervised RL

- states: \mathcal{S}
- actions: \mathscr{A}
- horizon length: H
- transition kernel: $\mathbf{P}: \mathcal{S} \times \mathcal{A} \to \mu(\mathcal{S})$
- reward function:
 - $r: [H] \times \mathcal{S} \times \mathcal{A} \to [0,1]$
- policy:

$$\pi: \mathcal{S} \to \mu(\mathcal{A})$$

$$Q_h^{\pi}(x,a) := \mathbb{E}\left[r_h(x_h,a_h) + \dots + r_H(x_h,a_h)\right]$$

 $V_h^{\pi}(x) := Q_h^{\pi}(x, \pi_h(x))$

 $[x_H, a_H)]$ $Q^* := \max_{\pi} Q^{\pi}$ $V^* := \max V^{\pi}$

Jin, C., Krishnamurthy, A., Simchowitz, M., & Yu, T. (2020, November). Reward-free exploration for reinforcement learning. In International Conference on Machine Learning (pp. 4870-4879). PMLR. Zhang, X., Ma, Y., & Singla, A. (2020). Task-agnostic exploration in reinforcement learning. Advances in Neural Information Processing Systems, 33, 11734-11743.

Reduction to Supervised RL

[Algorithm] For each $r \in \mathcal{R}$, learning a

policy π with a supervised RL algorithm.

$\mathcal{R} \subset \{r: [H] \times \mathcal{S} \times \mathcal{A} \to [0,1]\}$

[Supervised RL]
$$K$$
 trajectories are suff $K = \Theta(H^2)$

Azar, M. G., Osband, I., & Munos, R. (2017, July). Minimax regret bounds for reinforcement learning. In *International Conference on Machine Learning* (pp. 263-272). PMLR. Dann, C., & Brunskill, E. (2015). Sample complexity of episodic fixed-horizon reinforcement learning. *Advances in Neural Information Processing Systems*, 28.

Ficient/necessary to solve supervised RL ${}^{2}SA \cdot \log / \epsilon^{2}$

P + Dynamic Programming

[Algorithm] Estimating $\hat{\mathbf{P}} \approx \mathbf{P} \in [0,1]^{S^2A}$,

then DP for each r

[Sample Complexity] $K \propto S^2 A / \epsilon^2$ [How $\hat{\mathbf{P}}$?] w/ generative model $\boldsymbol{\boldsymbol{\varTheta}}$,

otherwise 🧐 [Jin et. al, 2020]

[Total Variation] With N i.i.d samples, $|\hat{\mathbf{P}} - \mathbf{P}|_{\ell_1} < \sqrt{S^2 A \cdot \log / N}$, w.h.p.

Jin, C., Krishnamurthy, A., Simchowitz, M., & Yu, T. (2020, November). Reward-free exploration for reinforcement learning. In International Conference on Machine Learning (pp. 4870-4879). PMLR.

Unsupervised RL is nearly as hard as supervised RL

Wu, J., Braverman, V., & Yang, L. (2021). Accommodating picky customers: Regret bound and exploration complexity for multi-objective reinforcement learning. Advances in Neural Information Processing Systems, 34. Dann, C., & Brunskill, E. (2015). Sample complexity of episodic fixed-horizon reinforcement learning. Advances in Neural Information Processing Systems, 28.

Minimax Cases $\mathscr{R} := \{r : [H] \times \mathscr{S} \times \mathscr{A} \to [0,1]\}$

[Upper Bound] There is an ALO that needs at

most *K* trajectories: *S* instead of S^2 $K = O(H^3SA \cdot \log / \epsilon^2)$

[Lower Bound] Every (ϵ , 0.1)-correct ALO

needs at least K trajectories:

$$\mathbb{E}[K] \ge \Omega \left(H^2 S A \ / \ \epsilon^2 \right)$$

Azar, M. G., Osband, I., & Munos, R. (2017, July). Minimax regret bounds for reinforcement learning. In International Conference on Machine Learning (pp. 263-272). PMLR.

Wu, J., Braverman, V., & Yang, L. (2021). Accommodating picky customers: Regret bound and exploration complexity for multi-objective reinforcement learning. *Advances in Neural Information Processing Systems*, 34.

Ā	Algorithm 2 UCB-Q-values
]	Require: Bonus algorithm bonus, Data \mathcal{H}
	Compute, for all $(x,a,y) \in S \times A \times S$,
	$N_k(x,a,y) = \sum_{(x',a',y') \in \mathcal{H}} \mathbb{I}(x'=x,a'=a,y'=y)$
<i>,</i>	$N_k(x,a) = \sum_{y \in \mathcal{S}} N_k(x,a,y)$
$(x_{k,h},a)$	$N_{k,h}'(x,a) = \sum_{(x_{i,h},a_{i,h},x_{i,h+1})\in\mathcal{H}}^{g\in\mathcal{C}} \mathbb{I}(x_{i,h}=x,a_{i,h}=a)$
$_{+1})$	Let $\mathcal{K} = \{(x,a) \in \mathcal{S} \times \mathcal{A}, N_k(x,a) > 0\}$
	Estimate $\widehat{P}_k(y x,a) = \frac{N_k(x,a,y)}{N_k(x,a)}$ for all $(x,a) \in \mathcal{K}$
	Initialize $V_{k,H+1}(x) = 0$ for all $(x,a) \in \mathcal{S} \times \mathcal{A}$
	for $h = H, H - 1,, 1$ do
	for $(x,a) \in \mathcal{S} \times \mathcal{A}$ do
	if $(x,a) \in \mathcal{K}$ then
	$b_{k,h}(x,a) \!=\! \texttt{bonus}(\widehat{P}_k,\!V_{k,h+1},\!N_k,\!N_{k,h}')$
og	$Q_{k,h}(x,a) = \min(Q_{k-1,h}(x,a),H,$
<i>, a</i>)	$R(x,a) + (\widehat{P}_k V_{k,h+1})(x,a) + b_{k,h}(x,a))$
, (1)	else
ver orders	$Q_{k,h}(x,a) = H$
	end II
	$V_{k,h}(x) = \max_{a \in \mathcal{A}} Q_{k,h}(x,a)$
t bonus"	end for
	end for
_	return Q-values $Q_{k,h}$

Gap Cases $\mathscr{R} := \{r : gap(r) \ge \rho\}$

$gap(r) := min\{nonzero V_{h}^{*}(x;r) - Q_{h}^{*}(x,a;r)\}$ x.a.h

[Sample Complexity] $\approx \begin{cases} \tilde{\Theta}(1), & H = 1 \\ ?, & H > 2 \end{cases}$

For unsupervised bandits (H=1), gap enables an acceleration $\tilde{\Theta}(1/\epsilon^2) \rightarrow \tilde{\Theta}(1)$

and Statistics, 25.

Wu, J., Braverman, V., & Yang, L. F. (2021). Gap-dependent unsupervised exploration for reinforcement learning. International Conference on Artificial Intelligence

An Algorithm and An Upper Bound

[Exploration] "Modified UCBVI"

- "reward" $\rightarrow 0$
- bonus is *clipped* (set to zero if it is small) (*p* is an input)

bonus^k(x, a)
$$\approx \operatorname{clip}_{\frac{\rho}{H}}\left(\sqrt{\frac{H^2\log}{N^k(x,a)}}\right)$$
 +

[Upper Bound] There is an (ϵ, δ) -correct ALO, that needs K episodes $K \leq \tilde{\mathcal{O}}\left(\frac{H^3SA}{\rho\epsilon} \cdot \log\frac{1}{\delta} + \frac{H^4S^2A}{\epsilon} \cdot \log\frac{1}{\delta}\right) = \tilde{\mathcal{O}}\left(\frac{1}{\epsilon}\right)$ where $\tilde{\mathcal{O}}$ hides $\log^2(HSAK)$ and constants.

For unsupervised RL, gap enables an acco

Wu, J., Braverman, V., & Yang, L. F. (2021). Gap-dependent unsupervised exploration for reinforcement learning. International Conference on Artificial Intelligence and Statistics, 25.

+ lower orders

[Planning] The usual UCBVI bonus^k(x, a) $\approx \sqrt{\frac{H^2 \log}{N^k(x, a)}}$

eleration
$$\tilde{\Theta}(1/\epsilon^2) \rightarrow \tilde{\Theta}(1/\epsilon)$$

Open Problems

- Improving *H* dependence?
- An algorithm agnostic to $\rho?$
- Removing lower order S^2 ? 3.

