Unsupervised Reinforcement Learning

Theoretical Guarantees in the Hard and Easy Cases

Jingfeng Wu, Vladimir Braverman, Lin F. Yang

Supervised RL

- states: \mathcal{S}
- actions: \mathscr{A}
- horizon length: H
- transition kernel: $\mathbf{P}: \mathcal{S} \times \mathscr{A} \rightarrow \mu(\mathcal{S})$
- reward function:

$$
r:[H] \times \mathcal{S} \times \mathscr{A} \rightarrow[0,1]
$$

- policy:

$$
\pi: \mathcal{S} \rightarrow \mu(\mathscr{A})
$$

$Q_{h}^{\pi}(x, a):=\mathbb{E}\left[r_{h}\left(x_{h}, a_{h}\right)+\cdots+r_{H}\left(x_{H}, a_{H}\right)\right]$
$V_{h}^{\pi}(x):=Q_{h}^{\pi}\left(x, \pi_{h}(x)\right)$
supervised exploration

Perseverance Rover
(weather, location, etc..) and reward (water?)

2 compute a "good" policy π

$$
\mathbb{P}\left\{V_{1}^{*}-V_{1}^{\pi}>\epsilon\right\}<\delta
$$

$$
\begin{aligned}
Q^{*} & :=\max _{\pi} Q^{\pi} \\
V^{*} & :=\max V^{\pi}
\end{aligned}
$$

Unsupervised RL \approx MDP +
a set of reward functions
$\mathscr{R} \subset\{r:[H] \times \mathcal{S} \times \mathscr{A} \rightarrow[0,1]\}$

$$
\begin{gathered}
\text { action } \\
\text { (e.g., turn) }
\end{gathered}
$$

2 user chooses a task from \mathscr{R}

[^0]
Reduction to Supervised RL

[Algorithm] For each $r \in \mathscr{R}$, learning a policy π with a supervised RL algorithm.

$$
\mathscr{R} \subset\{r:[H] \times \mathcal{S} \times \mathscr{A} \rightarrow[0,1]\}
$$

[Sample Complexity]
$K=\mathcal{O}\left(|\mathscr{R}| \cdot H^{2} S A \cdot \log / \epsilon^{2}\right)$
[Memory] $\propto|\mathscr{R}|$, costly
$\approx \frac{1}{\epsilon^{S A}}$
[Supervised RL] K trajectories are sufficient/necessary to solve supervised RL

$$
K=\Theta\left(H^{2} S A \cdot \log / \epsilon^{2}\right)
$$

Azar, M. G., Osband, I., \& Munos, R. (2017, July). Minimax regret bounds for reinforcement learning. In International Conference on Machine Learning (pp. 263-272). PMLR.
Dann, C., \& Brunskill, E. (2015). Sample complexity of episodic fixed-horizon reinforcement learning. Advances in Neural Information Processing Systems, 28.

$\hat{\mathbf{P}}+$ Dynamic Programming

[Algorithm $]$ Estimating $\hat{\mathbf{P}} \approx \mathbf{P} \in[0,1]^{S^{2} A}$, then DP for each r
[Sample Complexity] $K \propto S^{2} A / \epsilon^{2}$
[How $\hat{\mathbf{P}}$?] w/ generative model : ;
otherwise (a) [Jin et. al, 2020]

Bellman Equation

$$
\begin{aligned}
Q_{h}^{*}(x, a) & :=r_{h}(x, a)+\max _{a \in \mathscr{A}} \mathbb{E}_{y \sim \mathbb{P}(\cdot \mid x, a)} V_{h+1}^{*}(y) \\
V_{h}^{*}(x) & :=\max _{a \in \mathscr{A}} Q_{h}^{*}(x, a)
\end{aligned}
$$

Necessary to have an accurate model? S^{2} factor: yes for RFE, no for TAE
[Total Variation] With N i.i.d samples, $|\hat{\mathbf{P}}-\mathbf{P}|_{\ell_{1}}<\sqrt{S^{2} A \cdot \log / N}$, w.h.p.

Minimax Cases $\mathscr{R}:=\{r:[H] \times \mathcal{S} \times \mathscr{A} \rightarrow[0,1]\}$

[Question] how much exploration (K) is sufficient/necessary to compute (ϵ, δ)-correct policy?

$$
\mathbb{P}\left\{\begin{array}{c}
\text { for an "independent" } \\
r \in \mathscr{R} \\
V_{1}^{*}(r)-V_{1}^{\pi}(r)>\epsilon
\end{array}\right\}<\delta
$$

[Upper Bound] There is an ALO that needs at most K trajectories:
S instead of S^{2}

$$
K=\mathcal{O}\left(H^{3} S A \cdot \log / \epsilon^{2}\right)
$$

[Lower Bound] Every ($\epsilon, 0.1$)-correct ALO needs at least K trajectories:

$$
\mathbb{E}[K] \geq \Omega\left(H^{2} S A / \epsilon^{2}\right)
$$

Unsupervised RL is nearly as hard as supervised RL

[^1]
UCBVI

[Analysis]

```
Algorithm 1 UCBVI
    Initialize data \(\mathcal{H}=\emptyset\)
    for episode \(k=1,2, \ldots, K\) do
        \(Q_{k, h}=\mathrm{UCB}-\mathrm{Q}-\operatorname{values}(\mathcal{H})\)
        for step \(h=1, \ldots, H\) do
                            Take action \(a_{k, h}=\arg \max _{a} Q_{k, h}\left(x_{k, h}, a\right)\)
            Update \(\mathcal{H}=\mathcal{H} \cup\left(x_{k, h}, a_{k, h}, x_{k, h+1}\right)\)
        end for
    end for
```

$$
\begin{array}{rlrl}
V_{1}^{*}-V_{1}^{\pi} & \lesssim \bar{V}_{1}^{\pi} & R(x, a)=0 & \\
& \leq \bar{V}_{1}^{K} & & \text { bonu.s }^{k}(x, a) \approx \sqrt{\frac{H^{2} \log }{N^{k}(x, a)}} \\
& \leq \frac{1}{K} \cdot \sum_{k=1}^{K} \bar{V}_{1}^{k} & & + \text { lower orders } \\
& \lesssim \frac{1}{K} \cdot \sqrt{H^{3} S A K} \quad \text { "reward-independent bonus" }
\end{array}
$$

```
Algorithm 2 UCB-Q-values
Require: Bonus algorithm bonus, Data \(\mathcal{H}\)
    Compute, for all \((x, a, y) \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}\),
    \(N_{k}(x, a, y)=\sum_{\left(x^{\prime}, a^{\prime}, y^{\prime}\right) \in \mathcal{H}} \mathbb{I}\left(x^{\prime}=x, a^{\prime}=a, y^{\prime}=y\right)\)
    \(N_{k}(x, a)=\sum_{y \in \mathcal{S}} N_{k}(x, a, y)\)
    \(N_{k, h}^{\prime}(x, a)=\sum_{\left(x_{i, h}, a_{i, h}, x_{i, h+1}\right) \in \mathcal{H}} \mathbb{I}\left(x_{i, h}=x, a_{i, h}=a\right)\)
    Let \(\mathcal{K}=\left\{(x, a) \in \mathcal{S} \times \mathcal{A}, N_{k}(x, a)>0\right\}\)
    Estimate \(\widehat{P}_{k}(y \mid x, a)=\frac{N_{k}(x, a, y)}{N_{k}(x, a)}\) for all \((x, a) \in \mathcal{K}\)
    Initialize \(V_{k, H+1}(x)=0\) for all \((x, a) \in \mathcal{S} \times \mathcal{A}\)
    for \(h=H, H-1, \ldots, 1\) do
        for \((x, a) \in \mathcal{S} \times \mathcal{A}\) do
            if \((x, a) \in \mathcal{K}\) then
        \(b_{k, h}(x, a)=\operatorname{bonus}\left(\widehat{P}_{k}, V_{k, h+1}, N_{k}, N_{k, h}^{\prime}\right)\)
        \(Q_{k, h}(x, a)=\min \left(Q_{k-1, h}(x, a), H\right.\),
                                    \(\left.R(x, a)+\left(\widehat{P}_{k} V_{k, h+1}\right)(x, a)+b_{k, h}(x, a)\right)\)
            else
                \(Q_{k, h}(x, a)=H\)
            end if
    \(V_{k, h}(x)=\max _{a \in \mathcal{A}} Q_{k, h}(x, a)\)
        end for
    end for
    return Q-values \(Q_{k, h}\)
```

Azar, M. G., Osband, I., \& Munos, R. (2017, July). Minimax regret bounds for reinforcement learning. In International Conference on Machine Learning (pp. 263-272). PMLR.
Wu, J., Braverman, V., \& Yang, L. (2021). Accommodating picky customers: Regret bound and exploration complexity for multi-objective reinforcement learning. Advances in Neural Information Processing Systems, 34.

Gap Cases $\mathscr{R}:=\{r: \operatorname{gap}(r) \geq \rho\}$

$$
\operatorname{gap}(r):=\min _{x, a, h}\left\{\text { nonzero } V_{h}^{*}(x ; r)-Q_{h}^{*}(x, a ; r)\right\}
$$

$$
\text { [Sample Complexity] } \approx\left\{\begin{array}{ll|}
\tilde{\Theta}(1), & H=1 \\
?, & H \geq 2
\end{array}\right.
$$

For unsupervised bandits ($\mathrm{H}=1$),
gap enables an acceleration $\tilde{\Theta}\left(1 / \epsilon^{2}\right) \rightarrow \tilde{\Theta}(1)$
[Unsupervised Bandit ($\mathrm{H}=1$)]

[Algorithm] Uniform exploration
[Analysis]

$$
\begin{aligned}
\mathbb{P}\left\{a^{\prime} \neq a\right\} & =\mathbb{P}\left\{\widehat{R}_{a^{\prime}}>\widehat{R}_{a}\right\} \\
& =\mathbb{P}\left\{\left(\widehat{R}_{a^{\prime}}-r_{a^{\prime}}\right)-\left(\widehat{R}_{a}-r_{a}\right)>r_{a}-r_{a^{\prime}}\right\} \\
& \leq \mathbb{P}\left\{\left(\widehat{R}_{a^{\prime}}-r_{a^{\prime}}\right)-\left(\widehat{R}_{a}-r_{a}\right)>\rho\right\} \\
& \lesssim A \exp \left(-\rho^{2} K\right) \approx A \exp \left(-\rho^{2} T / A\right) .
\end{aligned}
$$

A Lower Bound

[Lower Bound] Any (ϵ, δ)-correct ALO in gap cases needs at least K episodes,

$$
\mathbb{E}[K] \geq \begin{cases}\Omega\left(\frac{H^{2} S A}{\rho \epsilon} \cdot \log \frac{1}{\delta}\right)=\Omega\left(\frac{1}{\epsilon}\right), & H \geq 2 \\ \Omega\left(\frac{S A}{\rho^{2}} \log \frac{1}{\delta}\right)=\Omega(1), & H=1 .\end{cases}
$$

Type II
and $S-2$ copies of

Type III

Wu, J., Braverman, V., \& Yang, L. F. (2021). Gap-dependent unsupervised exploration for reinforcement learning. International Conference on Artificial Intelligence and Statistics, 25.

An Algorithm and An Upper Bound

[Exploration] "Modified UCBVI"

- "reward" $\rightarrow 0$
- bonus is clipped (set to zero if it is small) (ρ is an input)

$$
\operatorname{bonus}^{k}(x, a) \approx \operatorname{clip}_{\frac{\rho}{H}}\left(\sqrt{\frac{H^{2} \log }{N^{k}(x, a)}}\right)+\text { lower orders }
$$

[Planning] The usual UCBVI

$$
\text { bonus }^{k}(x, a) \approx \sqrt{\frac{H^{2} \log }{N^{k}(x, a)}}
$$

[Upper Bound] There is an (ϵ, δ)-correct ALO, that needs K episodes

$$
K \leq \tilde{\mathcal{O}}\left(\frac{H^{3} S A}{\rho \epsilon} \cdot \log \frac{1}{\delta}+\frac{H^{4} S^{2} A}{\epsilon} \cdot \log \frac{1}{\delta}\right)=\tilde{\mathcal{O}}\left(\frac{1}{\epsilon}\right)
$$

where $\tilde{\mathcal{O}}$ hides $\log ^{2}(H S A K)$ and constants.
For unsupervised RL, gap enables an acceleration $\tilde{\Theta}\left(1 / \epsilon^{2}\right) \rightarrow \tilde{\Theta}(1 / \epsilon)$

[^2]
Take-Home

1. Unsupervised $\mathrm{RL} \approx$ supervised RL

$$
\begin{aligned}
& \text { unsupervised } \propto \tilde{\mathscr{O}}\left(H^{3} S A / \epsilon^{2}\right) \\
& \text { vs. } \\
& \text { Supervised } \propto \tilde{\mathcal{O}}\left(H^{2} S A / \epsilon^{2}\right)
\end{aligned}
$$

2. gap-cases are easier, but is still "hard" when $H \geq 2$

$$
\text { gap-rate } \propto \tilde{\mathscr{O}}(1 / \epsilon)
$$

VS.
minimax-rate $\propto \tilde{\mathscr{O}}\left(1 / \epsilon^{2}\right)$

Open Problems

1. Improving H dependence?
2. An algorithm agnostic to ρ ?
3. Removing lower order S^{2} ?

[^0]: Jin, C., Krishnamurthy, A., Simchowitz, M., \& Yu, T. (2020, November). Reward-free exploration for reinforcement learning. In International Conference on Machine Learning (pp. 4870-4879). PMLR.
 Zhang, X., Ma, Y., \& Singla, A. (2020). Task-agnostic exploration in reinforcement learning. Advances in Neural Information Processing Systems, 33, 11734-11743.

[^1]: Wu, J., Braverman, V., \& Yang, L. (2021). Accommodating picky customers: Regret bound and exploration complexity for multi-objective reinforcement
 learning. Advances in Neural Information Processing Systems, 34.
 Dann, C., \& Brunskill, E. (2015). Sample complexity of episodic fixed-horizon reinforcement learning. Advances in Neural Information Processing Systems, 28.

[^2]: Wu, J., Braverman, V., \& Yang, L. F. (2021). Gap-dependent unsupervised exploration for reinforcement learning. International Conference on Artificial Intelligence and Statistics, 25.

