

# **Gap-Dependent Unsupervised Exploration** for Reinforcement Learning

Jingfeng Wu, Vladimir Braverman, Lin F. Yang Johns Hopkins University, UCLA

# **Problem Setup**

Unsupervised RL: Task-Agnostic Exploration (TAE)

- Reward Set:  $\mathscr{R} \subset \{r : [H] \times \mathscr{S} \times \mathscr{A} \to [0,1]\}$
- Exploration: collect data, w/o reward signal
- **Planning**: given an "independent" reward  $r \in \mathcal{R}$ , compute a nearly optimal policy:

 $\mathbb{P}\{V_1^*(r) - V_1^{\pi}(r) > \epsilon\} < \delta$ 

#### **Existing Results**

minimax sample complexity  $\propto \tilde{\mathcal{O}}(1/\epsilon^2)$ 

#### Question (gap-TAE)

If  $\mathscr{R} := \{r : gap(r) \ge \rho\}$ , i.e., the possible reward induces a constant "gap", is there a faster algorithm? Example: Go Game, multiple winning rules,

 $\mathscr{R} := \{$ Chinese rule, Japanese rule, Korean rule, ...  $\}$ 

# Algorithm

**Exploration.** UCBVI with two modifications:

- "reward"  $\rightarrow 0$
- bonus is *clipped* (set to zero if it is small) ( $\rho$  is an input)

$$c^{k}(x,a) \approx \operatorname{clip}_{\frac{\rho}{H}}\left(\sqrt{\frac{H^{2}\log}{N^{k}(x,a)}}\right) + \text{lower orders}$$

Planning. The usual UCBVI method, bonus

$$b^k(x,a) \approx \sqrt{\frac{H^2 \log}{N^k(x,a)}}$$

#### Theory

Finite-horizon MDP, S states, A actions, horizon length H, gap  $\rho$  for reward set  $\mathscr{R}$ , failure probability  $\delta$ .

#### An Upper Bound

For the output policy  $\pi$  after *K* episodes, the error is at most

$$V_1^*(x_1) - V_1^{\pi}(x_1) \le \tilde{\mathcal{O}}\left(\frac{H^3SA}{\rho K} \cdot \log\frac{1}{\delta} + \frac{H^4S^2A}{K} \cdot \log\frac{1}{\delta}\right) = \tilde{\mathcal{O}}\left(\frac{1}{K}\right)$$

where  $\tilde{O}$  hides  $\log^2(HSAK)$  and constants.

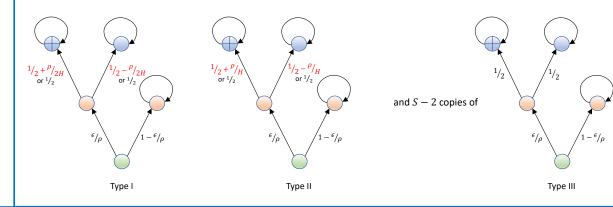
#### A Lower Bound

For any gap-TAE algorithm, to be  $(\epsilon, \delta)$ -correct needs at least K episodes where

$$\mathbb{E}[K] \ge \Omega\left(\frac{H^2SA}{\rho\epsilon} \cdot \log\frac{1}{\delta}\right) = \Omega\left(\frac{1}{\epsilon}\right)$$

## Our bounds are nearly tight for $\epsilon$ (or K)

A hard instance for gap dependent task-agnostic exploration



#### Messages

limited

### **Discussions**

- dependent rate?

# References

[1] Simchowitz, Max, and Kevin G. Jamieson. "Non-asymptotic gap-dependent regret bounds for tabular MDPs." Advances in Neural Information Processing Systems 32 (2019): 1153-1162. [2] Wu, Jingfeng, Vladimir Braverman, and Lin F. Yang. Accommodating Picky Customers: Regret Bound and Exploration Complexity for Multi-Objective Reinforcement Learning." arXiv preprint arXiv:2011.13034 (2020). [3] Zhang, Xuezhou, and Adish Singla. "Task-agnostic exploration in reinforcement learning." arXiv preprint arXiv:2006.09497 (2020).





1. gap-TAE can be faster, but is still

# gap-TAE $\propto \tilde{\mathcal{O}}(1/\epsilon)$ vs. TAE $\propto \tilde{\mathcal{O}}(1/\epsilon^2)$

2. RL vs. bandits or MDP w/ simulator: a separation in the unsupervised setting

gap-TAE for bandit or MDP w/ simulator  $\propto O(1)$ 

• An ALGO agnostic to  $\rho$ , the gap lower bound?

• Removing  $S^2$  dependence?

· Interpolating the minimax rate and the gap-

• Improving *H* dependence?