Accommodating Picky Customers Regret Bound \& Exploration Complexity for Multi-Objective RL

 PROCESSINORMATION PROCESSING SYSTEMS

Jingfeng Wu, Vladimir Braverman, Lin Yang

Multi-Objective Reinforcement Learning

Multiple Objectives and Unknown Preferences

Faaaaster!

Online MORL

[Upper Bound] For any $\left\{w^{1}, \ldots, w^{K}\right\}$ and with high prob., MO-UCBVI (Bernstein ver.) satisfies:

$$
\operatorname{regret}(K) \leq \mathcal{O}\left(\frac{\left.\sqrt{\min \{d, S\} \cdot H^{2} S A K \cdot \log }\right)}{\text { matching single-obj. RL when } d=1}\right.
$$

[Lower Bound] For every MORL algorithm, there is a distribution of MOMDPs and a (necessarily adversarial) sequence $\left\{w^{1}, \ldots, w^{K}\right\}$ such that:

MORL is statistically harder than single-objective RL

Preference-Free Exploration

[Exploration] MO-UCBVI (Hoeffding ver.) with 0 reward
[Planning] Typical UCBVI with input preference/reward
[Upper Bound] For our algorithm to be (ϵ, δ)-PAC, it suffices to have

$$
K=\mathcal{O}(\underbrace{2}_{\substack{\min \{d, S\} \cdot H^{3} S A \cdot \log / \epsilon^{2} \\ \text { nearly tight except for } H}}
$$

[Lower Bound] There is a distribution of MOMDPs such that for every $(\epsilon, \delta=0.1)$-PAC algorithm, there is a (necessarily adversarial) w such that:
$\mathbb{E}[K] \geq \Omega\left(\min \{d, S\} \cdot H^{2} S A / \epsilon^{2}\right)$
$\min \{d, S\}$ vs. $S:$
exploration is easier when rewards are structured Numerical Simulations

