Obtaining Adjustable Regularization for Free via Iterate Averaging

Jingfeng Wu, Vladimir Braverman, Lin F. Yang Johns Hopkins University & UCLA

June 2020

Searching optimal hyperparameter

ML/Opt problem

GD/SGD
$$w_{k+1} = w_k - \eta \left(\nabla L(w) + \lambda R(w) \right)$$

$$w_k \to w_\lambda^*$$
 Learning rate/step size

Re-running the optimizer is expensive! 😊

ResNet-50 + ImageNet + 8 GPUs

- A single round of training takes about 3 days.
- Almost a year to try a hundred different hyperparameters.

Can we obtain *adjustable* regularization for *free*?

Iterate averaging => regularization (Neu et al.)

Iterate averaging protocol

- Require: A stored opt. path
- Input: a hyperparameter λ
 - Compute a weighting scheme
 - Average the path
- Output: the regularized solution

Iterate averaging is cheap ©
But Neu et al.'s result is limited ©

Formally, Neu et al. shows

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} \|w^{T}x - y\|_{2}^{2}$$

•
$$\ell_2$$
-regularization

$$R(w) = \frac{1}{2} ||w||_2^2$$

$$w_{k+1} = w_k - \eta \nabla L(w)$$

• Geometric averaging
$$p_k = (1-p)p^k, \ p = \frac{1}{1+\lambda\eta}$$

$$p_1w_1 + p_2w_2 + \cdots + p_kw_k$$
 solves $\min_w L(w) + \lambda R(w)$

Our contributions: ©©©©

Iterate averaging works for more general

1. regularizers \leftarrow = generalized ℓ_2 -regularizer

2. optimizers <= Nesterov's acceleration

3. objectives <= strongly convex and smooth losses

4. deep neural networks! (Empirically)

1. Generalized ℓ_2 -regularization

$$R(w) = \frac{1}{2} w^{\top} Q w - \cdots$$

Use a preconditioned GD/SGD path instead!

$$w_{k+1} = w_k - \eta Q^{-1} \nabla L(w)$$

$$p_1 w_1 + p_2 w_2 + \dots + p_k w_k \quad \text{solves} \quad \min_{w} L(w) + \frac{\lambda}{\lambda} R(w)$$

2. Nesterov's acceleration

Weighting scheme

$$p_k = \frac{\gamma}{\eta} \left(\frac{\sqrt{\gamma(\alpha + \lambda)} - \sqrt{\eta\alpha}}{1 - \sqrt{\eta\alpha}} \right) \left(\frac{1 - \sqrt{\gamma(\alpha + \lambda)}}{1 - \sqrt{\eta\alpha}} \right)^{k-2}$$
where $\gamma = \frac{\eta}{1 + \lambda\eta}$

$$p_1w_1 + p_2w_2 + \dots + p_kw_k$$

solves
$$\min_{w} L(w) + \lambda R(w) \leftarrow$$

 $^{+}$ ℓ_{2} -regularizer

3. Strongly convex and smooth objectives

Yes! But only approximately...

Geometric weighting scheme $p_k = (1 - p)p^k$

$$\hat{w}_{\pmb{\lambda_1}} \lesssim \sum_{k=1}^{\infty} p_k w_k \lesssim \hat{w}_{\pmb{\lambda_2}} \qquad \hat{w}_{\pmb{\lambda}} = \arg\min L(w) + \frac{\pmb{\lambda}}{R}(w)$$

$$\uparrow$$

$$\ell_2\text{-regularizer}$$

4. Deep neural networks ©

Dataset	CIFAR-10		CIFAR-100
Model	VGG-16	ResNet-18	ResNet-18
Accuracy after	92.54	94.54	75.62
training $(\%)$	± 0.22	± 0.04	± 0.16
Accuracy after	93.18	94.72	$\boldsymbol{76.24}$
averaging (%)	± 0.06	± 0.04	± 0.05
Time of training	$\sim 4.5 \mathrm{h}$	$\sim 8.3 \mathrm{h}$	$\sim 8.3 \mathrm{h}$
Time of averaging	$\sim 47 \mathrm{s}$	$\sim 56 \mathrm{s}$	$\sim 58 \mathrm{s}$

A single GPU K80

Iterate averaging is effective and efficient!

Take Home

Iterate averaging => adjustable regularization for free

- For ℓ_2 -type regularization
- For SGD/NSGD optimizers
- For quadratic/strongly convex and smooth objectives
- Regularizing deep neural networks

Join our poster session for more details!