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Abstract
We study the anisotropic noise of stochastic gradient descent (SGD) and its benefits on helping

the dynamic escaping from minima. Concisely, we show that:
1. Compared with the isotropic noise, the curvature-aware anisotropic noise benefits to escape

from sharp minima;
2. The noise of SGD is indeed aligned with the Hessian of loss surface in neural network settings.

Thus we conclude that SGD could efficiently escape from sharp minima, towards flatter ones
that typically generalize well, and partly explain the implicit regularization of SGD.

The Continuous Approximation of SGD

Loss function: L(θ) := 1
N

∑N
i=1 `(xi; θ), θ ∈ RD.

SGD: θt+1 = θt − η 1
m

∑
x∈Bt

∇θ`(x; θt), where Bt is a randomly selected mini-batch.

A general form: gradient descent with unbiased noise

θt+1 = θt − η∇θL(θt) + εt, εt ∼ N (0,Σt) . (1)

Continuous approximation with stochastic differential equation

dθt = −∇θL(θt) dt +
√

Σt dWt. (2)
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Figure 1: 2-D toy example. Compared dynamics are initialized at the sharp minima. See Figure 2 for the definition of each
legend. Left: The trajectory of each compared dynamics for escaping from the sharp minimum in one run. Right: Success
rate of arriving the flat solution in 100 repeated runs.

Escaping Efficiency
We define the escaping efficiency as the expected increase of the potential or the loss.

Definition 1 (Escaping efficiency). Suppose the SDE (2) is initialized at minimum θ0, then for a fixed
time t small enough, the escaping efficiency is defined as

Eθt[L(θt)− L(θ0)] (3)

Under suitable approximations, it could be shown that for SDE (2),

E[L(θt)− L(θ0)] = −
∫ t

0
E
[
∇LT∇L

]
+

∫ t

0

1

2
ETr(HtΣt) dt (4)

≈ 1

4
Tr
((

I − e−2Ht
)

Σ

)
≈ t

2
Tr (HΣ) . (5)

Therefore Tr (HΣ)serves as an important indicator for measuring the escaping behavior of noises with
different structures.

To eliminate the impact of noise scale and focus on exploring the effect of noise structure, assume
that

given time t,Tr(Σt) is constant. (6)
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Figure 2: FashionMNIST (tweaked) experiments. Compared dynamics are initialized at θ∗GD found by GD, marked by the
vertical dashed line in iteration 3000. GLD const: constant noise; GLD dynamic: the isotropic equvalence of SGD noise;
GLD diag: the diagnoal approximation of SGD noise; GLD leading: the low rank approximation of SGD noise; GLD
Hessian: the noise with Hessian as covariance; GLD 1st eigven(H): the rank-1 approximation of the Hessian noise. Left:
Test accuracy versus iteration. Right: Expected sharpness versus iteration. Expected sharpness (the higher the sharper) is
measured as Eν∼N (0,δ2I)

[
L(θ + ν)

]
− L(θ), and δ = 0.01, the expectation is computed by average on 1000 times sampling.

Anisotropic Noise Helps Escape from Minima
Proposition 1 shows the anisotropic noise is superior to its isotropic equivalence, in terms of escaping
from minima.
Proposition 1. Assume HD×D and ΣD×D are both semi-positive definite. Suppose that
1. H is ill-conditioned. Let λ1, λ2 . . . λD be the eigenvalues of H in descent order, and for some

constant k � D and d > 1
2, the eigenvalues satisfy

λ1 > 0, λk+1, λk+2, . . . , λD < λ1D
−d; (7)

2. Σ is “aligned” with H . Let ui be the corresponding unit eigenvector of eigenvalue λi, for some
projection coefficient a > 0, we have

uT1 Σu1 ≥ aλ1
TrΣ

TrH
. (8)

Then for such anisotropic Σ and its isotropic equivalence Σ̄ = TrΣ
D I under constraint (6), we have the

follow ratio describing their difference in term of escaping efficiency,

Tr (HΣ)

Tr(HΣ̄)
= O

(
aD(2d−1)

)
, d >

1

2
. (9)

• Thanks to the over-parameterization of neural networks, the first condition holds naturally.

• Specifically for the noise of SGD, Proposition 2 guarantees the second condition.
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Figure 3: FashionMNIST (tweaked) experiments. Left: The first 400 eigenvalues of Hessian at θ∗GD, the sharp minima

found by GD after 3000 iterations. Right: The projection coefficient estimation â =
uT1 Σu1TrH
λ1TrΣ , as shown in Proposition 1.

SGD Noise and the Curvature of Loss Surface

Proposition 2. Consider a binary classification problem with data {(xi, yi)}i∈I , y ∈ {0, 1}, and mean
square loss,

L(θ) = E(x,y)‖φ ◦ f (x; θ)− y‖2 , (10)

where f denotes the network and φ is a threshold activation function,

φ(f ) = min{max{f, δ}, 1− δ}, (11)

δ is a small positive constant.
Suppose the network f satisfies:

1. it has one hidden layer and piece-wise linear activation;

2. the parameters of its output layer are fixed during training.

Then there is a constant a > 0, for θ close enough to minima θ∗,

u(θ)TΣ(θ)u(θ) ≥ aλ(θ)
TrΣ(θ)

TrH(θ)
(12)

holds almost everywhere, for λ(θ) and u(θ) being the maximal eigenvalue and its corresponding eigen-
vector of Hessian H(θ).

0 5 10 15 20 25 30

iteration

10−1

100

101

102

103

Tr(HtΣt)

Tr(HtΣ̄t)

32 hidden nodes

128 hidden nodes

512 hidden nodes

0 2000 4000 6000 8000 10000 12000 14000

iteration

10−7

10−5

10−3

10−1

101

103

Tr(HtΣt)

Tr(HtΣ̄t)

Figure 4: The escape indicator of SGD noise and its isotropic equivalence. Left: One hidden layer neural networks. The
solid and the dotted lines represent the value of Tr(HΣ) and Tr(HΣ̄), respectively. The number of hidden nodes varies in
{32, 128, 512}. Right: FashionMNIST (tweaked) experiments.

Proposition 2 and 1 together illustrate that the anisotropic noise of SGD helps it escape faster from
sharp minima, compared with its isotropic equivalence, which partly explains the implicit bias of SGD.

Conclusion

We explore the escaping behavior of SGD-like processes through analyzing their continuous approxi-
mation. We show that thanks to the anisotropic noise, SGD could escape from sharp minima efficiently,
which leads to implicit regularization effects. Our work raises concerns over studying the structure of
SGD noise and its effect. Experiments support our understanding.
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