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Semi-supervised learning (SSL)

» Suppose we have insufficient amount of labeled data
(x1, y1) and large amount of unlabeled data x;

» How to learn a classifier fully utilizing the unlabeled
data x,,?

One important approach: Manifold Regularization!
The key motivation is that unlabeled data could help to
identify a good data manifold.



Assumptions (informal)

The manifold assumption The observed data x € R” is

almost concentrated on a low dimensional
underlying manifold M =~ R9 d < D.

The noisy observation assumption The observed data can
be decomposed as x = xg + n, where xp is
exactly supported on the manifold M and n
is some noise independent of xg.

The semi-supervised learning assumption The true
classifier, or the true condition distribution
p(y|X) varies smoothly along the underlying
manifold M.



Introduce TNAR: Tangent-Normal Adversarial
Regularization

Based on the assumptions, a good classifier for
semi-supervised learning should be:

» Smooth along the underlying manifold M;
» Robust to the off manifold noise n.

To this end, we propose tangent-normal adversarial
regularization (TNAR).



TNAR: Tangent-Normal Adversarial Regularization
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Figure: Illustration for the tangent-normal adversarial regularization.
r| is the adversarial perturbation along the tangent space to induce
invariance of the classifier on manifold;

ri is the adversarial perturbation along the normal space to impose
robustness on the classifier against noise n.



Notations

(x1,y1), xu labeled example, unlabeled example.

D, D,, D, full dataset, labeled dataset, unlabeled
dataset.

p(y|x; 0) or f(x;0) the classifier to be optimized.
RP. M the observed space and the data manifold.

X, z the coordinates of an example in the observed

space RP and on the manifold M
respectively.

g, h the generator (decoder) and the encoder.

T.M = J,g(z) 2 RY z = h(x), the tangent space,
or the span of the columns of the Jacobian of
g.



Overview of the TNAR loss

The proposed loss for SSL is

L(Dy, Dui; 0) == E(x yyen,l (vi, p(y|x1; 0))

1
+ CVlﬂ'z"xeDIR'tangent(X; 9) + OZZEXEDRnormaI(X; 9) ( )
( is the supervised loss and TAR and NAR are:
Reangent(x; 0) = max dist(p(y|x; 0), p(y|x+r; 9)),
re TxMijzé(Rd)
_ (2)
Rnormal(x; 0) = max dist(p(y|x; 0), p(y|x +r;0)). (3)
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Elaborate TNAR (= TAR + NAR)

Part 1: Manifold Identify the underlying data manifold
M (or its tangent space T, M).

Part 2: Tangent Adversarial Regularization (TAR)
Perform virtual adversarial training along
T, M, to enforce the local smoothness of the
classifier along the underlying manifold.

Part 3: Normal Adversarial Regularization (NAR)
Perform virtual adversarial training along
(T.M)*, to impose robustness on the

classifier against the noise carried in the
observed data.



Part 1: ldentify the underlying manifold M

Generative models with both encoder and decoder could
be used to describe the data manifold

» VAE;
» Localized GAN:;

» Other generative models like denoise AE, Flow,
BiGAN, etc.



Key observation to Part 2 and 3

1
F(x,r,0) = dist(p(y|x;0), p(y|x +r;0)) = ErTHr. (4)

The vanishing of the first two terms in Taylors expansion
of F occurs because that dist(-, -) is some distance
measure with 1) minimum zero and 2) r = 0 is the
optimal value.

Thus

1
Riangent(X; 0) = max ~rTHr, (5)
Irl,<e, 2
re TeM=Jrg(RY)
1
Rnormal(X; 0) = ”rﬂ]a<x —r' Hr. (6)
r|l,<e,

rl TyM



Part 2: Tangent Adversarial Regularization

To optimize TAR

1
Rtangent(X; 9) = | I’|T|13<X EI'THI’ (7)
rll,<e,
re TxM=J,g(R?)

is equivalent to solve:

1
maximize —rTHr
reRP
s.t. rll, <e

r=J-n, neRY (J:=J,g e RP*9)
(8)



Part 2: Tangent Adversarial Regularization

Eliminate r, we have
. 1 + 1
maximize -n'J"HJ
gl 2"l 1 (9)
s.t. nTJTdn < €.

This is a generalized eigenvalue problem and could be
solved by power iteration and conjugate gradient as

v« JTHJn

W< (JTJ)_lv (10)

el

Fortunately, all the above update could be computed
efficiently in constant times of back-propagating.



Part 3: Normal Adversarial Regularization

In a same spirit with TAR and some relaxation, we could
solve NAR

1

Rnormal(x; 0) = Hr‘r|1ax ~rTHr (11)
r||,<e,
rJ_%X_M
by
1
m:iéiﬂggize ~rTHr — )\rT(rHr”T)r (12)
st il <e

where r; is the perturbation obtained in TAR.
It is again an eigenvalue problem and could be solved in
constant times of back-propagating.



The final loss

As suggested by Miyato et al., entropy regularization

benefits VAT hence TNAR since it ensures the model to
predict more determinately,

Rentropy (X 6) := = Y _ p(y|x; 0) log p(y|x; 6).  (13)

The final proposed loss for SSL is

L(Dy, Dut, 0) :=E(x, yyen,l (v1, p(y|x1; 0))
+ OflExeDtlztangent(X; e)
+ 2B xepRnormal (X; 0)
+ Ov”31[‘:)<EDIRxentropy(X; 9)

(14)
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Figure: The decision boundaries of compared methods on two-rings
artificial dataset. Gray dots distributed on two rings: the unlabeled data.
Blue dots (3 in each ring): the labeled data. Colored curves: the decision
boundaries found by compared methods.



SVHN and CIFAR-10 (without data augmentation)

Table: Classification errors (%) of compared methods on SVHN and CIFAR-10 without data
augmentation.

Method SVHN 1,000 labels CIFAR-10 4,000 labels
VAT (small) 6.83 14.87
VAT (large) 4.28 13.15
VAT + SNTG 4.02 12.49
T model 5.43 16.55
Mean Teacher 5.21 17.74
CCLP 5.69 18.57
ALI 7.41 17.99
Improved GAN 8.11 18.63
Tripple GAN 5.77 16.99
Bad GAN 4.25 14.41
LGAN 4.73 14.23
Improved GAN + JacobRegu + tangent 4.39 16.20
Improved GAN + ManiReg 451 14.45
TNAR-LGAN (small) 4.25 12.97
TNAR-LGAN (large) 4.03 12.76
TNAR-VAE (small) 3.99 12.39
TNAR-VAE (large) 3.80 12.06
TAR-VAE (large) 5.62 13.87

NAR-VAE (large) 4.05 15.91




SVHN and CIFAR-10 (with data augmentation)

Table: Classification errors (%) of compared methods on SVHN and
CIFAR-10 with data augmentation.

Method SVHN CIFAR-10
1,000 labels 4,000 labels
VAT (large) 3.86 10.55
VAT + SNTG 3.83 9.89
T model 4.82 12.36
Temporal ensembling 4.42 12.16
Mean Teacher 3.95 12.31
LGAN 9.77

TNAR-VAE (large) 3.74 8.85




Thanks!
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