Tangent-Normal Adversarial Regularization for Semi-Supervised Learning

Bing Yu*, Jingfeng Wu*, Jinwen Ma, Zhanxing Zhu

Peking University Beijing Institute of Big Data Research

June, 2019

Semi-supervised learning (SSL)

- Suppose we have insufficient amount of labeled data (x_l, y_l) and large amount of unlabeled data x_{ul} ;
- ► How to learn a classifier fully utilizing the unlabeled data x_{ul} ?

One important approach: Manifold Regularization! The key motivation is that unlabeled data could help to identify a good data manifold.

Assumptions (informal)

- The manifold assumption The observed data $x \in \mathbb{R}^D$ is almost concentrated on a low dimensional underlying manifold $\mathcal{M} \cong \mathbb{R}^d, d \ll D$.
- The noisy observation assumption The observed data can be decomposed as $x = x_0 + n$, where x_0 is exactly supported on the manifold \mathcal{M} and n is some noise independent of x_0 .
- The semi-supervised learning assumption The true classifier, or the true condition distribution p(y|X) varies smoothly along the underlying manifold \mathcal{M} .

Introduce TNAR: Tangent-Normal Adversarial Regularization

Based on the assumptions, a good classifier for semi-supervised learning should be:

- ▶ Smooth along the underlying manifold \mathcal{M} ;
- Robust to the off manifold noise n.

To this end, we propose tangent-normal adversarial regularization (TNAR).

TNAR: Tangent-Normal Adversarial Regularization

Figure: Illustration for the *tangent-normal adversarial regularization*. r_{\parallel} is the adversarial perturbation along the tangent space to induce invariance of the classifier on manifold:

 r_{\perp} is the adversarial perturbation along the normal space to impose robustness on the classifier against noise n.

Notations

- $(x_l, y_l), x_{ul}$ labeled example, unlabeled example.
- $\mathcal{D}, \mathcal{D}_{I}, \mathcal{D}_{uI}$ full dataset, labeled dataset, unlabeled dataset.
- $p(y|x;\theta)$ or $f(x;\theta)$ the classifier to be optimized.
 - $\mathbb{R}^D, \mathcal{M}$ the observed space and the data manifold.
 - x,z the coordinates of an example in the observed space \mathbb{R}^D and on the manifold \mathcal{M} respectively.
 - g, h the generator (decoder) and the encoder.
 - $T_x \mathcal{M} = J_z g(z) \cong \mathbb{R}^d, z = h(x)$, the tangent space, or the span of the columns of the Jacobian of g.

Overview of the TNAR loss

The proposed loss for SSL is

$$L(D_{l}, D_{ul}; \theta) := \mathbb{E}_{(x_{l}, y_{l}) \in \mathcal{D}_{l}} \ell \left(y_{l}, p(y|x_{l}; \theta) \right) + \alpha_{1} \mathbb{E}_{x \in \mathcal{D}} \mathcal{R}_{tangent}(x; \theta) + \alpha_{2} \mathbb{E}_{x \in \mathcal{D}} \mathcal{R}_{normal}(x; \theta).$$
(1)

 ℓ is the supervised loss and TAR and NAR are:

$$\mathcal{R}_{\mathsf{tangent}}(x;\theta) = \max_{\substack{\|r\|_{2} \leq \epsilon, \\ r \in T_{x}\mathcal{M} = J_{z}g(\mathbb{R}^{d})}} dist(p(y|x;\theta), p(y|x+r;\theta)),$$

$$\mathcal{R}_{\mathsf{normal}}(x;\theta) = \max_{\substack{\|r\|_{2} \leq \epsilon, \\ r \mid T_{z}\mathcal{M}}} dist(p(y|x;\theta), p(y|x+r;\theta)). \tag{3}$$

Elaborate TNAR (= TAR + NAR)

- Part 1: Manifold Identify the underlying data manifold \mathcal{M} (or its tangent space $T_x\mathcal{M}$).
- Part 2: Tangent Adversarial Regularization (TAR)

 Perform virtual adversarial training along $T_x \mathcal{M}$, to enforce the local smoothness of the classifier along the underlying manifold.
- Part 3: Normal Adversarial Regularization (NAR)
 Perform virtual adversarial training along $(T_x \mathcal{M})^{\perp}$, to impose robustness on the classifier against the noise carried in the observed data.

Part 1: Identify the underlying manifold ${\cal M}$

Generative models with both encoder and decoder could be used to describe the data manifold

- VAE:
- Localized GAN;
- ▶ Other generative models like denoise AE, Flow, BiGAN, etc.

Key observation to Part 2 and 3

$$F(x,r,\theta) := dist(p(y|x;\theta),p(y|x+r;\theta)) \approx \frac{1}{2}r^{T}Hr.$$
 (4)

The vanishing of the first two terms in Taylors expansion of F occurs because that $dist(\cdot, \cdot)$ is some distance measure with 1) minimum zero and 2) r=0 is the optimal value.

Thus

$$\mathcal{R}_{\mathsf{tangent}}(x;\theta) = \max_{\substack{\|r\|_{2} \le \epsilon, \\ r \in \mathcal{T}_{x} \mathcal{M} = J_{z} g(\mathbb{R}^{d})}} \frac{1}{2} r^{T} H r, \tag{5}$$

$$\mathcal{R}_{\text{normal}}(x;\theta) = \max_{\substack{\|r\|_2 \le \epsilon, \\ r \mid T \sim \mathcal{M}}} \frac{1}{2} r^T H r. \tag{6}$$

Part 2: Tangent Adversarial Regularization

To optimize TAR

$$\mathcal{R}_{\mathsf{tangent}}(x;\theta) = \max_{\substack{\|r\|_{2} \le \epsilon, \\ r \in \mathcal{T}_{x} \mathcal{M} = J_{z}g(\mathbb{R}^{d})}} \frac{1}{2} r^{\mathsf{T}} H r \tag{7}$$

is equivalent to solve:

Part 2: Tangent Adversarial Regularization

Eliminate r, we have

maximize
$$\frac{1}{\eta \in \mathbb{R}^d} \eta^T J^T H J \eta$$
s.t.
$$\eta^T J^T J \eta \le \epsilon^2.$$
(9)

This is a *generalized eigenvalue problem* and could be solved by power iteration and conjugate gradient as

$$v \leftarrow J^{T} H J \eta$$

$$\mu \leftarrow (J^{T} J)^{-1} v$$

$$\eta \leftarrow \frac{\mu}{\|\mu\|_{2}}.$$
(10)

Fortunately, all the above update could be computed efficiently in constant times of back-propagating.

Part 3: Normal Adversarial Regularization

In a same spirit with TAR and some relaxation, we could solve NAR

$$\mathcal{R}_{\text{normal}}(x;\theta) = \max_{\substack{\|r\|_{2} \le \epsilon, \\ r \perp T_{x} \mathcal{M}}} \frac{1}{2} r^{T} H r$$
 (11)

by

where r_{\parallel} is the perturbation obtained in TAR. It is again an *eigenvalue problem* and could be solved in **constant times of back-propagating**.

The final loss

As suggested by Miyato et al., *entropy regularization* benefits VAT hence TNAR since it ensures the model to predict more determinately,

$$\mathcal{R}_{\text{entropy}}(x;\theta) := -\sum_{y} p(y|x;\theta) \log p(y|x;\theta). \tag{13}$$

The final proposed loss for SSL is

$$L(D_{l}, D_{ul}, \theta) := \mathbb{E}_{(x_{l}, y_{l}) \in \mathcal{D}_{l}} \ell \left(y_{l}, p(y|x_{l}; \theta) \right)$$

$$+ \alpha_{1} \mathbb{E}_{x \in \mathcal{D}} \mathcal{R}_{tangent}(x; \theta)$$

$$+ \alpha_{2} \mathbb{E}_{x \in \mathcal{D}} \mathcal{R}_{normal}(x; \theta)$$

$$+ \alpha_{3} \mathbb{E}_{x \in \mathcal{D}} \mathcal{R}_{entropy}(x; \theta).$$

$$(14)$$

Two-rings artificial dataset

Figure: The decision boundaries of compared methods on two-rings artificial dataset. Gray dots distributed on two rings: the unlabeled data. Blue dots (3 in each ring): the labeled data. Colored curves: the decision boundaries found by compared methods.

SVHN and CIFAR-10 (without data augmentation)

Table: Classification errors (%) of compared methods on SVHN and CIFAR-10 without data augmentation.

Method	SVHN 1,000 labels	CIFAR-10 4,000 labels
VAT (small)	6.83	14.87
VAT (large)	4.28	13.15
VAT + SNTG	4.02	12.49
Π model	5.43	16.55
Mean Teacher	5.21	17.74
CCLP	5.69	18.57
ALI	7.41	17.99
Improved GAN	8.11	18.63
Tripple GAN	5.77	16.99
Bad GAN	4.25	14.41
LGAN	4.73	14.23
${\sf Improved}{\sf GAN}+{\sf JacobRegu}+{\sf tangent}$	4.39	16.20
${\sf Improved\ GAN\ +\ ManiReg}$	4.51	14.45
TNAR-LGAN (small)	4.25	12.97
TNAR-LGAN (large)	4.03	12.76
TNAR-VAE (small)	3.99	12.39
TNAR-VAE (large)	3.80	12.06
TAR-VAE (large)	5.62	13.87
NAR-VAE (large)	4.05	15.91

SVHN and CIFAR-10 (with data augmentation)

Table: Classification errors (%) of compared methods on SVHN and CIFAR-10 with data augmentation.

Method	SVHN	CIFAR-10
	1,000 labels	4,000 labels
VAT (large)	3.86	10.55
VAT + SNTG	3.83	9.89
Π model	4.82	12.36
Temporal ensembling	4.42	12.16
Mean Teacher	3.95	12.31
LGAN	-	9.77
TNAR-VAE (large)	3.74	8.85

Thanks!