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Abstract
We propose a tangent-normal adversarial regularization for semi-supervised learning
(SSL). It 1s composed by

1. tangent adversarial regularization, which enforces the local smoothness of the classifier along
the underlying manifold;

2. normal adversarial regularization, which imposes robustness on the classifier against the noise
carried in the observed data.

Empirically, TNAR achieves state-of-the-art performance for semi-supervised learning.

Motivation

Semi-supervised Learning
Input

e Insufficient amount of labeled data (x}, y;);
e Sufficient amount of unlabeled data z ;.

Output A learned classifier fully utilizing both labeled and unlabeled data.

Assumptions

1. The manifold assumption The observed data x € RY is almost concentrated on a low dimensional
underlying manifold M = R% d < D.

2. The noisy observation assumption The observed data can be decomposed as * = z( + n, where
x( 1s exactly supported on the manifold M and n is some noise independent of z.

3. The semi-supervised learning assumption The true classifier, or the true condition distribution
p(y| X ) varies smoothly along the underlying manifold M.

Thus a good classifier for SSL should be
e Smooth along the underlying manifold M; < TAR

e Robust to the off manifold noise n. ~— NAR
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Figure 1: Illustration for tangent-normal adversarial regularization. x = xy + n is the observed data, where z is exactly
supported on the underlying manifold M and n is the noise independent of x(. 7 is the adversarial perturbation along the
tangent space to induce invariance of the classifier on manifold; r, 1s the adversarial perturbation along the normal space
to impose robustness on the classifier against noise n.

Notations

(7, 1;), x,,; labeled example, unlabeled example.

D. D, D, tull dataset, labeled dataset, unlabeled dataset.

plylx: ) or f(x;0)the classifier to be optimized.

RY . M the observed space and the data manifold.

1, ~ the coordinates of an example in the observed space RY and on the manifold M respectively.
g, h the generator (decoder) and the encoder.

TM=J.g(z) = RY, z = h(x), the tangent space, or the span of the columns of the Jacobian of g.

Tangent-Normal Adversarial Regularization (TNAR)
The proposed loss

L(Dy, D,;;0) := E(xz,yz)éng (yl, p(y|z;; 9)) ‘|‘041Ex€DRtangent(37§ 0) + a0l cpRiormal (; 0)
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e Supervised loss: /

e Tagent adversarial regularization (TAR):

Riangent(2; 0) = max dist(p(yl|z; 0), p(y|z +7:0)), (2)
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e Normal adversarial regularization (NAR):

72n0rmal<5l7§ 9) = H Iﬁla<x diSt(p(y‘xQ (9),p(y|:c + T 9)) (3)
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Key components for TNAR
1. Identify manifold;
2. Pertorm virtual adversarial regularization along tangent space;

3. Perform virtual adversarial regularization along normal space.

Manifold

Generative models with both encoder and decoder could be used to describe the data manifold, e.g.,
e Variational Autoencoder;
e [.ocalized GAN;

e Other generative models like Denoise Autoencoder, Flow, BIGAN, etc.

Tangent adversarial regularization

Using the trick introduced by Miyato et.al and taking Taylor’s expansion we have
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The vanishing of the first two terms in Taylors expansion occurs because that dist(-, -) is some distance
measure with 1) minimum zero and 2) » = 0 1s the optimal value.
Problem (4) 1s equivalent to

1
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This 1s a generalized eigenvalue problem and could be solved by power iteration and conjugate gradi-
ent in constant times of back-propagating.

Normal adversarial regularization

Similarly, we approximately reformate NAR (3) as

1
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where | 1s the perturbation obtained in TAR. It 1s again an eigenvalue problem and could be solved by
power iteration in constant times of back-propagating.

Experiments
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Figure 2: The decision boundaries of compared methods on two-rings artificial dataset. Gray dots distributed on two rings:
the unlabeled data. Blue dots (3 in each ring): the labeled data. Colored curves: the decision boundaries found by compared
methods.
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Table 1: Classification errors (%) of compared methods on SVHN and CIFAR-10 with data augmentation.

Method SVHN 1,000 labels CIFAR-10 4,000 labels
VAT (large) 3.80 = 0.11 10.95 £ 0.05

VAT + SNTG 3.83 £+ 0.22 9.89 4+ 0.34

IT model 4.82+0.17 12.36 £ 0.31

Temporal ensembling 4.42 4 0.16 12.16 = 0.24

Mean Teacher 3.95 4+ 0.19 12.31 £ 0.28

LGAN - 9.77 £ 0.13
TNAR-VAE (large) 3.7440.04 8.85+0.03

Table 2: Classification errors (%) of compared methods on SVHN and CIFAR-10 without data augmentation.

Method SVHN 1,000 labels CIFAR-10 4,000 labels
VAT (small) 6.83 & 0.24 14.87 £+ 0.13
VAT (large) 4.28 = 0.10 13.15 = 0.21
VAT + SNTG 4.02 = 0.20 12.49 £ 0.36
11 model 5.43 £ 0.25 16.55 = 0.29
Mean Teacher 5.21 £0.21 17.74 4+ 0.30
CCLP 5.69 £ 0.28 18.57 4+ 0.41
ALI 7.41 4 0.65 17.99 £+ 1.62
Improved GAN 8.114+1.3 18.63 £ 2.32
Tripple GAN 5. 77 £ 0.17 16.99 = 0.36
Bad GAN 4.25 £ 0.03 14.41 £ 0.30
LGAN 4.73 £0.16 14.23 & 0.27
Improved GAN + JacobRegu + tangent 4.39 £ 1.20 16.20 £ 1.60
Improved GAN + ManiRegu 4.51 £0.22 14.45 = 0.21
TNAR-LGAN (small) 4.25 £ 0.09 12.97 & 0.31
TNAR-LGAN (large) 4.03 £ 0.13 12.76 & 0.04
TNAR-VAE (small) 3.99 = 0.08 12.39 = 0.11
TNAR-VAE (large) 3.80 =0.12 12.06 == 0.35
TAR-VAE (large) 5.62 4 0.19 13.87 4 0.32
NAR-VAE (large) 4.05 £ 0.04 15.91 == 0.09

Figure 3: The perturbations and adversarial examples in tangent space and normal space for CIFAR-10 dataset. Note
that the perturbations is actually too small to distinguish easily, thus we show the scaled perturbations. From left to right:
original example, tangent adversarial perturbation, normal adversarial perturbation, tangent adversarial example, normal
adversarial example.

Conclusion

We present the tangent-normal adversarial regularization for semi-supervised learning, a novel regular-
1zation strategy based on virtual adversarial training and manifold regularization. TNAR 1s composed
of regularization on the tangent and normal space separately. The tangent adversarial regularization
enforces manifold invariance of the classifier, while the normal adversarial regularization imposes ro-
bustness of the classifier against the noise contained in the observed data. Experiments on synthetic
and real datasets demonstrate the effectiveness of our method.
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